The question is asking to choose among the following choices is cannot be considered as a single phase and base on my further research and understanding about the sad topic, I would say that the answer would be <span>d) a heterogeneous mixture. I hope you are satisfied with my answer </span>
You have to figure out a way to write the two unknown abundances in terms of one variable.
The total abundance is 1 (or 100%). So if you say the abundance for the first one is X then the abundance for the second one has to be 1-X (where X is the decimal of the percentage so say 0.8 for 80%).
203(X) + 205(1-X) = 204.4
Then you just solve for X to get the percentage for TI-203.
And then solve for 1-X to get the percentage for TI-205.
After that the higher percentage would be the most abundant.
203x + 205 - 205x = 204.4
-2x + 205 = 204.4
-2x = -0.6
x = 0.3
1-x = 0.7
Then the TI-205 would have the highest percentage and would be the most abundant.
the plants would grow and reproduce working together forming nutrients from their dropped leaves / branches etc causing insects to come along and do the same along with animals and a keystone species to form a revolving ecosystem continuing an energy moving process
I'm not so sure but I would say Answer Choice B
Answer:
The number of neutron in the Aluminium Isotope is :
B. 14
Explanation:
Isotopes : These are the atoms which have same atomic number but have different mass number.
<u>This image shows the average atomic mass of Al element because it is in decimals</u>.
Atomic mass = 26.98154
(Note : mass number of single isotope can never be in decimals)
It is the average of mass of different isotopes of Al
Major Isotopes of
are :
......atomic mass = 26
.......atomic mass = 27
mass of Al given in image(26.98) is nearly equal to mass of 2nd isotope(27)
mass of 
Now calculate the neutron in 
Number of neutron = mass number - atomic number
= 27 - 13
Number of neutron = 14
(Atomic mass is same as mass number)