A locating agent is needed in an experiment to separate amino acids by chromatography as it helps to analyze colorless substances on paper.
<h3>What is chromatography?</h3>
Chromatography is an analytical method frequently used to separate a chemical mixture into its components, allowing for in-depth analysis of each component.
There are many different types of chromatography including liquid, gas, ion-exchange, and affinity chromatography, but they all use the same basic principle.
<h3>What is the use of a locating agent in Chromatography?</h3>
In paper chromatography, colorless compounds are examined using a locating agent.
It is a chemical that combines with colorless substances to produce colorful compounds that are easy to see for analysis. Ninhydrin spray is an example of a locating agent of this type.
Thus, a locating agent is used in an experiment to separate amino acids by chromatography as it helps in determining colorless substances on paper.
Learn more about chromatography:
brainly.com/question/11960023
#SPJ9
Answer:
They give off their own light energy
Explanation:
I'm taking astronomy and I answered this questions not too long ago
Photosynthesizing plants and algae convert light energy into chemical energy, which then gets passed through the food web to plant eaters, flesh eaters, and ultimately to scavengers and decomposers.
The element that will have the lowest electronegativity is an element with a small number of valence electrons and a large atomic radius.
Electronegativity of an element is the ability or power of that element in a molecule to attract electrons to its Valence electrons. The following are the properties of electronegativity:
- It increases across a period from left to right of the periodic table,
- It decreases down the periodic table groups
- Group 1 elements are the least (lowest) electronegative elements. These elements have the lowest valence electrons with a large atomic radius.
- Group 7 elements are the most electronegative elements.
Atomic radius of elements increase down a group because of a progressive increase in the number of shells occupied by electrons which increases the size. But it decreases across a period because electrons are accommodated within the same shell leading to greater attraction by the protons in the nucleus.
Learn more about electronegativity of elements here:
brainly.com/question/20348681
Answer:
-255.4 kJ
Explanation:
The free energy of a reversible reaction can be calculated by:
ΔG = (ΔG° + RTlnQ)*n
Where R is the gas constant (8.314x10⁻³ kJ/mol.K), T is the temperature in K, n is the number of moles of the products (n =1), and Q is the reaction quotient, which is calculated based on the multiplication of partial pressures by the partial pressure of the products elevated by their coefficient divide by the multiplication of the partial pressure of the reactants elevated by their coefficients.
C₂H₂(g) + 2H₂(g) ⇄ C₂H₆(g)
Q = pC₂H₆/[pC₂H₂ * (pH₂)²]
Q = 0.261/[8.58*(3.06)²]
Q = 3.2487x10⁻³
ΔG = -241.2 + 8.314x10⁻³x298*ln(3.2487x10⁻³)
ΔG = -255.4 kJ