If a negative object is used to charge a neutral object, then both objects become charged negatively. In order for the neutral sphere to become negative, it must gain electrons from the negatively charged rod. A metal sphere is electrically neutral. It is touched by a positively charged metal rod.
Jerome solves a problem using the law of conservation of momentum. What should Jerome always keep constant for each object after the objects collide and bounce apart?
a-velocity
b-mass
c-momentum
d-direction
Answer:
b. Mass
Explanation:
This question has to do with the principle of the law of conservation of momentum which states that the momentum of a system remains constant if no external force is acting on it.
As the question states, two objects collide with each other and eventually bounce apart, so their momentum may not be conserved but the mass of the objects is constant for each non-relativistic motion. Because of this, the mass of each object prior to the collision would be the same as the mass after the collision.
Therefore, the correct answer is B. Mass.
Answer:
L = 4.711 *10^{-6} kg m2/s
Explanation:


=4.5*10^-5
angular velocity

= 0.1047 rad/s
the angular momentum,



Answer:
motion
Explanation:
i had an assignment on it!
Answer:
v = wavelength * frequency
frequency = 5200 m/s / .2 m = 26000 / sec
20,000 / sec is optimistic for the upper frequency of human hearing
So 26,000 is above the hearing range for human ears