We can use the ideal gas law equation to find the volume occupied by oxygen gas
PV = nRT
where ;
P - pressure - 52.7 kPa
V - volume
n - number of oxygen moles - 12.0 g / 32 g/mol = 0.375 mol
R - universal gas constant - 8.314 Jmol⁻¹K⁻¹
T - temperature - 25 °C + 273 = 298 K
substituting the values in the equation
52 700 Pa x V = 0.375 mol x 8.314 Jmol⁻¹K⁻¹ x 298 K
V = 17.6 L
volume of the gas is 17.6 L
<em>Answer: </em>D
<em>Explanation:</em>
chemical formula of methane: CH4
electron configuration of C: 2,4
electron configuration of H: 1
there are 4 hydrogen atoms that donated 1 electron each to C
therefore it's D.
Hi, you've asked an incomplete question. Here's the diagram that completes the question.
Answer:
<u>(B) nonpolar covalent bonds</u>
Explanation:
This structure in the diagram rightly fits the description of a non-covalent bond because there is an equal sharing of electrons of Carbon (C) and Chlorine (Cl).
<em>Remember</em> too that these elements are in their solid-state, hence the CCl4 (carbon tetrachloride) molecules are held strongly together.
Answer:
The density of water
.
Explanation:
Density of water = 1.00 g/mL
1 lb = 453.592 g



Density of the water in
:


The density of water
.
Answer:
Number of moles = 3.73 mol
Explanation:
Given data:
Mass of LiCl = 158 g
Number of moles = ?
Solution:
Formula:
Number of moles = mass/ molar mass
Molar mass of LiCl = 42.4 g/mol
Number of moles = 158 g / 42.4 g/mol
Number of moles = 3.73 mol