Answer:
Protein Concentration is 2.82mg/L
Explanation:
According to Beer-Lambert's Law, Absorbance is directly proportional to the concentration.
However, the concentration of a solution can be determined from a calibration curve, in which Absorbance is plotted on the y-axis and the Concentration on the x-axis.
Plotting the best line, the equation of line is used
y = mx + c
where y is absorbance = 0.150
m is slope = 0.0163
x is concentration
c is intercept = 0.104
inserting the values from the question
y = mx + c
0.150 = 0.0163x + 0.104
0.0163x = 0.150 - 0.104
0.0163x = 0.046
Divide both sides by 0.0163
0.0163x/0.0163 = 0.046/0.0163
x = 2.82
Concentration of protein = 2.82 mg/L
<h3>Answer:</h3>
Formic acid is the stronger acid.
<h3>Explanation:</h3>
The strength of an acid is determined by the power of it to dissociate and produce H⁺ ions. Greater the dissociation of an acid, the stronger that acid is. Also, extent of dissociation for particular acid is given by its dissociation constant i.e. Ka.
The greater the Ka value, the stronger an acid is and vice versa.
Calculating Ka value of Pivalic acid:
As,
pKa = -log [Ka]
So,
Ka = 10^-pKa
Putting value of pKa,
Ka = 10⁻⁵
Ka = 1.0 × 10⁻⁵
Calculating Ka value of Formic acid:
As,
pKa = -log [Ka]
So,
Ka = 10^-pKa
Putting value of pKa,
Ka = 10⁻³'⁸
Ka = 1.58 × 10⁻⁴
<h3>Conclusion:</h3>
As the Ka value of Formic acid is greater than Pivalic acid therefore, it is stronger acid than Pivalic acid.
<h2>TIP:</h2>
When comparing strength of acids, the acid with the lowest pKa value is considered the strongest acid and <em>vice versa</em>.
Answer:
2
Explanation:
Plants use oxygen to make food during photosynthesis
Answer:
A. 0.01 M
Explanation:
Molar mass (KCl) = 39.1 + 35.5 = 74.6 g/mol
0.37 g KCl * 1 mol/74.6 g = 0.004960 mol
500 mL = 0.5 L
Molarity = mol solute/L solution = 0.004960 mol/0.5 L = 0.01 M