The answer would be b. Temperature of the solution increases
Temperature determines the kinetic energy of the water molecule. Higher temperature will cause the molecule to moves faster and the compound (KNO3) could break solute molecule easier make it become more soluble. A higher pressure will increase the solubility of a gas, not solid
Answer: +178.3 kJ
Explanation:
The chemical equation follows:

The equation for the enthalpy change of the above reaction is:
![\Delta H^o_{rxn}=[(1\times \Delta H^o_f_{(CaO(s))})+(1\times \Delta H^0f_{CO_2}]-[(1\times \Delta H^o_f_{(CaCO_3(s))})]](https://tex.z-dn.net/?f=%5CDelta%20H%5Eo_%7Brxn%7D%3D%5B%281%5Ctimes%20%5CDelta%20H%5Eo_f_%7B%28CaO%28s%29%29%7D%29%2B%281%5Ctimes%20%5CDelta%20H%5E0f_%7BCO_2%7D%5D-%5B%281%5Ctimes%20%5CDelta%20H%5Eo_f_%7B%28CaCO_3%28s%29%29%7D%29%5D)
We are given:

Putting values in above equation, we get:
![\Delta H^o_{rxn}=[(1\times (-635.1))+(1\times (-393.5))]-[(1\times (-1206.9))]](https://tex.z-dn.net/?f=%5CDelta%20H%5Eo_%7Brxn%7D%3D%5B%281%5Ctimes%20%28-635.1%29%29%2B%281%5Ctimes%20%28-393.5%29%29%5D-%5B%281%5Ctimes%20%28-1206.9%29%29%5D)
The DH°rxn for the decomposition of calcium carbonate to calcium oxide and carbon dioxide is +178.3 kJ
Answer:
-6.4x10⁻¹⁹ C
Explanation:
The elementary charge of one electron is -1.60x10⁻¹⁹C, so each electron has its charge, and a sample with more than one electrons will have a multiple of its charge, which is proportional to the number of electrons. So, if the oil droplet had 4 electrons, thus the charge will be four times the elementary charge:
4*(-1.60x10⁻¹⁹) C = -6.4x10⁻¹⁹ C