Answer: {(x + 2), (x - 1), (x - 3)}
Step-by-step explanation:
Presented symbolically, we have:
x^3 - 2x^2 - 5x + 6
Synthetic division is very useful for determining roots of polynomials. Once we have roots, we can easily write the corresponding factors.
Write out possible factors of 6: {±1, ±2, ±3, ±6}
Let's determine whether or not -2 is a root. Set up synthetic division as follows:
-2 / 1 -2 -5 6
-2 8 -6
-----------------------
1 -4 3 0
since the remainder is zero, we know for sure that -2 is a root and (x + 2) is a factor of the given polynomial. The coefficients of the product of the remaining two factors are {1, -4, 3}. This trinomial factors easily into {(x -1), (x - 3)}.
Thus, the three factors of the given polynomial are {(x + 2), (x - 1), (x - 3)}
I am not that really sure but ig its 5
Answer:
(-5,-3.5) is the midpoint
Step-by-step explanation:
See photo for the step-by-step explanation
Answer is -10
(x-3)-2(x+6)= -5
x-3-2x-12= -5
-x= -5+12+3
-x=10
x= -10