Ans) A) Centripetal force will be doubled.
See centripetal force F = mv^2/r
That means centripetal force is directly proportional to the mass of the particle
So, if we double the mass, centripetal force will be increased by twofolds.
So, option A) is correct.
Now, looking at the other options,
B) says centripetal force is unaltered which is incorrect as centripetal force has been altered and increased twofold.
Option C) and D) reduces centripetal force which are also not possible here.
So, only Option A) is correct
1 . W=mass times acceleration due to gravity
60kg times 9.8m/s2
= 588N
2. W=mg
1176N=m times 9.8
m=120kg
3. 1 hour=3600s
24 hours=?
24 times 3600
= 86400 seconds
4. 1000g=1kg
25000g=?
25000 times 1 divide by 1000
=25kg
5. 1000000mg=1kg
123000000=?
123000000 times 1 divide by 1000000
=123 kg
Answer:
0.000507 kg/m
Explanation:
L = Length of string
T = Tension
= Mass density of string
E denotes the E string
D denotes the D String
Frequency is given by

So


The mass density of the E string is 0.000507 kg/m
It can’t be b because that will increase the dissolving rate
Answer:
The temperature must the ring be heated so that the sphere can just slip through is 106.165 °C.
Explanation:
For brass:
Radius = 1.3590 cm
Initial temperature = 23.0 °C
The sphere of radius 1.3611 cm must have to slip through the brass. Thus, on heating the brass must have to attain radius of 1.3611 cm
So,
Δ r = 1.3611 cm - 1.3590 cm = 0.0021 cm
<u>The linear thermal expansion coefficient of a metal is the ratio of the change in the length per 1 degree temperature to its length.</u>
<u>Thermal expansion for brass = 19×10⁻⁶ °C⁻¹</u>
Thus,

Also,

So,

Solving for final temperature as:

<u>Final temperature = 106.165 °C</u>