Answer:
see explanation
Explanation:
You are missing the chart with the rates and time to do this, however, I wll do it with a similar exercise here, and you only need to replace the procedure with your data:
See the attached table.
From the left we have:
r = 1/2 (50 + 48 + 46 + 44 + 42 + 40) = 135 L/min
From the right we have:
r = 1/2 (48 + 46 +44 + 42 + 40 + 38) = 129 L/min.
And this should be the correct answer. Watch your chart and replace if it's neccesary.
Answer:
98,000 pa
Explanation:
The formula for water pressure is as follows:

Where <em>p </em>is the density of water (in kg/m3), <em>g </em>is the gravitational field strength, and <em>h </em>is the height of the water.
The density of water is 1000kg/m3, the gravitational field strength is 9.8, and the height is 10. Substituting in these values:


Answer:
The speed of Susan is 2.37 m/s
Explanation:
To visualize better this problem, we need to draw a free body diagram.
the work is defined as:

here we have the work done by Paul and the friction force, so:


Now the change of energy is:

Answer:
Change in specific internal Energy
Explanation:
Given:
- Mass of the gas, m=0.4 lb
- Initial pressure and volume are

- Final pressure and temperature are

- Heat transfer from the gas is 2.1 Btu
Since the process is isotropic we have

So the final volume of the gas is calculated.
Work in any isotropic is given by w

According to the first law of thermodynamics we have

So the Specific Internal Change is given by

So the specific Change in Internal energy is calculated.