Answer:
She passes through a loud spot at x = 19.5m from the first speaker. Constructive interference occurs here.
At the quiet spot destructive interference occurs. The minimum distance for this to occur is 20.25 from the first speaker.
Explanation:
Answer:
Magnitude = 4.056 m
Direction = 42.3⁰
Explanation:
The vector is resolved in terms of the vertical and horizontal components. Let's look each of these separately.
The vector 4.40 is directed East. This automatically becomes a horizontal component.
But we know that there is a vector 3.40 North West. The angle the vector makes with the horizontal is 61⁰.
Resolving the vectors should yield the horizontal and vertical components:
Horizontal components
The first component is 4.40 m
The second one is derived by resolving 3.40 to the horizontal like this 3.40 × - cos 61⁰ = -1.648 m
Adding the horizontal component gives 4.40 m + ( -1.648 m) = 2.752 m
Vertical components
Resolve 3.40 with the angle 61⁰ like this: vertical comp = 3.41 × sin 61
= 2.98 m
The magnitude is given by √[(2.98)²+ (2.752)²] = 4.056 m Ans
The direction us given by tan⁻¹ (2.98/2.752) = 42.3⁰ Ans
It channels erode wider fed by many tributaries and has more discharge and is less steep
If an airplane is flying at 300 km/h to the east and is facing a headwind of 18.0 km/h, the final velocity can be calculated using simple vector addition. In this case, the planes velocity is positive (+330 km/h) and head wind has a negative component (-18.0 km/h). Vector addition yields +330 km / h + (-18.0 km /h) = 312 km / h.
Answer:
A) 35 ft
B) 5 ft
C) Net displacement = distance covered by the dog to retrieve the stick - distance covered before the dog starts chewing the stick
Explanation:
A) Total distance covered by the dog = 20 + 15
= 35 ft
B) Since the other distance covered by the dog before chewing the stick, after the retrieval, was in an opposite direction to the initial direction, then;
total displacement of the dog = 20 - 15
= 5 ft
C) Net displacement = distance covered by the dog to retrieve the stick + distance covered before the dog starts chewing the stick
But, displacement involves a specified direction. The distance covered before the dog starts chewing the stick was in an opposite direction to the initial direction.
Thus,
Net displacement = distance covered by the dog to retrieve the stick - distance covered before the dog starts chewing the stick