Answer:
Explanation:
Initial momentum is 1.5e6(3) = 4.5e6 kg•m/s
An impulse results in a change of momentum
The tug applied impulse is 12000(10) = 120000 N•s or 0.12e6 kg•m/s
The remaining momentum is 4.5e6 - 0.12e6 = 4.38e6 kg•m/s
The barge velocity is now 4.38e6 / 1.5e6 = 2.92 m/s
The tug applies 0.012e6 N•s of impulse each second.
The initial barge momentum will be zero in
t = 4.5e6 / 0.012e6 = 375 s or 6 minutes and 15 seconds
To stop the barge in one minute(60 s), the tug would have to apply
4.5e6 / 60 = 75000 N•s /s or 75 000 N
Explanation:
since both the teammates are of the same height, their height won't matter. Because now the basketball won't cover any vertical distance.
We have to calculate its range the horizontal distance covered by it when tossed from one teammate to the other.
range can be calculated by the formula :-

u is the velocity during its take off and
is the angle at which its thrown
Given that
- u = 8m/ s
= 40°
calculating range using the above formula


value of sin 80 = 0. 985



Hence,

1 kilometre is equal to 1000m
and 4.1 minutes is equal to 246 seconds
thus 1000/246 = 4.065 m/s
and the direction is towards the west