2. The object's volume.
3. The density of the liquid.
Remember what the buoyant force is. It's the lifting force caused by the displacement of a fluid. I'm using the word fluid because it can be either a liquid or gas. For instance a helium balloon floats due to the buoyant force exceeding the mass of the balloon. So let's look at the options and see what's correct.
1. Object's mass
* This doesn't affect the buoyant force directly. It can have an effect if the object's mass is lower than the buoyant force being exerted. Think of a boat as an example. The boat is floating on the top of the water. If cargo is loaded into the boat, the boat sinks further into the water until the increased buoyant force matches the increased mass of the boat. But if the density of the object exceeds the density of the fluid, then increasing the mass of the object will not affect the buoyant force. So this is a bad choice.
2. The object's volume.
* Yes, this directly affects the buoyant force. So this is a good choice.
3. The density of the liquid.
* Yes, this directly affects the buoyant force. You can drop a piece of iron into water and it will sink. You could also drop that same piece of iron into mercury and it will float. The reason is that mercury has a much higher density than water. So this is a good choice.
4. Mass of the liquid
* No. Do not mistake mass for density. As a mental exercise, imagine the buoyant force on a small piece of metal dropped into a swimming pool. Now imagine the buoyant force on that same piece of metal dropped into a lake. In both cases, the buoyant force is the same, yet the lake has a far greater mass of water than the swimming pool. So this is a bad choice.
Answer:
500000000
if you can give me brainliest that would be great
Since each serves a different purpose, theories cannot become
laws. Explaining how or why a natural phenomenon occurs is what the set of ideas
called theories do. On the other hand, mathematical relationships that
describes what happens are what is done by laws.
Let me show an example that illustrates the points.
Describing what happens in the natural world are done by the mathematical
formulas called the Gas Laws. In this example, it would show that by using the
Gas Laws, I will be able to predict with great accuracy the pressure if I
double the temperature of a sealed gas. This idea is a law since the
relationship is mathematical and it tells us what will happen.
<span>On the other hand, in order to explain why gases behave like
the way they do, we must use the kinetic molecular theory.</span>
Answer:
The correct answer is B. your weight
Explanation:
Newton's third law states that every action has an equal and opposite reaction. You may not think this, but when you're standing on the floor, you are exerting a force against the floor: your weight, caused by gravity, is pulling you down. The floor is reacting by pushing back: we call this force the reaction force. -Google