<h2>MARK BRAINLIEST</h2>
For this assignment, you will develop several models that show how light waves and mechanical waves are reflected, absorbed, or transmitted through various materials. For each model, you will write a brief description of the interaction between the wave and the material. You will also compose two <u><em>typewritten</em></u> paragraphs. The first will compare and contrast light waves interacting with different materials. The second will explain why materials with certain properties are well suited for particular functions.
<h2><u>Background Information</u></h2>
A wave is any disturbance that carries energy from one place to another. There are two different types of waves: mechanical and electromagnetic. A mechanical wave carries energy through matter. Energy is transferred through vibrating particles of matter. Examples of mechanical waves include ocean waves, sound waves, and seismic waves. Like a mechanical wave, an electromagnetic wave can also carry energy through matter. However, unlike a mechanical wave, an electromagnetic wave does not need particles of matter to carry energy. Examples of electromagnetic waves include microwaves, visible light, X-rays, and radiation from the Sun.
Answer:
I don't know sorry For this question
Answer:
995.12 N/C
Explanation:
R = 9 cm = 0.09 m
σ = 9 nC/m^2 = 9 x 10^-9 C/m^2
r = 9.1 cm = 0.091 m
q = σ x 4π R² = 9 x 10^-9 x 4 x 3.14 x 0.09 x 0.09 = 9.156 x 10^-10 C
E = kq / r^2
E = ( 9 x 10^9 x 9.156 x 10^-10) / (0.091 x 0.091)
E = 995.12 N/C
Answer:
Wavelength = 0.7083 meters
Explanation:
Given the following data;
Speed of wave = 340 m/s
Frequency = 480 Hz
To find how long is the sound wave, we would determine its wavelength;
Mathematically, the wavelength of a waveform is given by the formula;
Wavelength = velocity/frequency
Wavelength = 340/480
Wavelength = 0.7083 meters