1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
gladu [14]
3 years ago
13

10. What is the acceleration due to gravity at a location

Physics
1 answer:
kherson [118]3 years ago
5 0
The answer is 3) 3.00 m/s2
You might be interested in
A disk rotates about its central axis starting from rest and accelerates with constant angular acceleration. At one time it is r
atroni [7]

(a) 2.79 rev/s^2

The angular acceleration can be calculated by using the following equation:

\omega_f^2 - \omega_i^2 = 2 \alpha \theta

where:

\omega_f = 20.0 rev/s is the final angular speed

\omega_i = 11.0 rev/s is the initial angular speed

\alpha is the angular acceleration

\theta=50.0 rev is the number of revolutions made by the disk while accelerating

Solving the equation for \alpha, we find

\alpha=\frac{\omega_f^2-\omega_i^2}{2d}=\frac{(20.0 rev/s)^2-(11.0 rev/s)^2}{2(50.0 rev)}=2.79 rev/s^2

(b) 3.23 s

The time needed to complete the 50.0 revolutions can be found by using the equation:

\alpha = \frac{\omega_f-\omega_i}{t}

where

\omega_f = 20.0 rev/s is the final angular speed

\omega_i = 11.0 rev/s is the initial angular speed

\alpha=2.79 rev/s^2 is the angular acceleration

t is the time

Solving for t, we find

t=\frac{\omega_f-\omega_i}{\alpha}=\frac{20.0 rev/s-11.0 rev/s}{2.79 rev/s^2}=3.23 s

(c) 3.94 s

Assuming the disk always kept the same acceleration, then the time required to reach the 11.0 rev/s angular speed can be found again by using

\alpha = \frac{\omega_f-\omega_i}{t}

where

\omega_f = 11.0 rev/s is the final angular speed

\omega_i = 0 rev/s is the initial angular speed

\alpha=2.79 rev/s^2 is the angular acceleration

t is the time

Solving for t, we find

t=\frac{\omega_f-\omega_i}{\alpha}=\frac{11.0 rev/s-0 rev/s}{2.79 rev/s^2}=3.94 s

(d) 21.7 revolutions

The number of revolutions made by the disk to reach the 11.0 rev/s angular speed can be found by using

\omega_f^2 - \omega_i^2 = 2 \alpha \theta

where:

\omega_f = 11.0 rev/s is the final angular speed

\omega_i = 0 rev/s is the initial angular speed

\alpha=2.79 rev/s^2 is the angular acceleration

\theta=? is the number of revolutions made by the disk while accelerating

Solving the equation for \theta, we find

\theta=\frac{\omega_f^2-\omega_i^2}{2\alpha}=\frac{(11.0 rev/s)^2-0^2}{2(2.79 rev/s^2)}=21.7 rev

4 0
3 years ago
A swimmer, capable of swimming at a speed of 1.0 m/s in still water (i.e., the swimmer can swim with a speed of 1.0 m/s relative
Vesnalui [34]
If the current takes him downstream we must find the resultant vector of the velocities: V res= \sqrt{1^{2}+0.91^{2}  } = \sqrt{1.8281}= 1.3520747 Then if the river is 3000 m-wide the swimmer will have to pass:
 1.3520747 · 300 = 4056.14 m                t = 4056.14 m : 1 m/s
a ) It takes 4056.15 seconds ( 1 hour 7 minutes and 36 seconds ) to cross the river.  
b ) 0.91 · 3000 = 2730 m
He will be 2730 m downstream.
5 0
3 years ago
The electric force between two charges A. increases with distance between the charges B. increases if either one of charges gets
beks73 [17]

Answer:

Option (A) , (b) and (d) are correct option

Explanation:

According to Coulomb's law electric force between two charges is given by

F=\frac{1}{4\pi \epsilon _0}\frac{q_1q_2}{r^2}

From the relation we can say that force is directly proportional to magnitude of charges and inversely proportional to distance between them '

So if we increase the distance then force will decrease

Increase if any of the charge get larger

If force is attractive then both the charge will be of different sign and is force is repulsive then both the charges of same sign

From above conclusion we can say that (a), (b) and (d) are correct option

6 0
3 years ago
Is there a definite end to our atmosphere?
Irina18 [472]
There is no definite end to earths atmosphere, but technically the border between the outer space and earth gets thinner as you move up from the earths surface. The Karman line is the closest definition there is which describes the end of the earth's atmosphere, it is 100 km above earth's sea level at approximately 1.56 % of total earth's radius. This describes the boundary between the outer space and the atmosphere.
7 0
3 years ago
The two properties of an electron that cannot be known exactly at the same time are the ____________________.
enyata [817]
Position and momentum.

This is Heisenberg's Uncertainty Principle:
Δx Δp ≥ h ÷ 4π,   where Δx is the change in position, Δp is the change in momentum, and h is Planck's Constant.
6 0
3 years ago
Other questions:
  • A lamp can work on 50V mains taking 2 amps. What value of resistance must be connected in series with it, so that it can be oper
    15·1 answer
  • The given function represents the position of a particle traveling along a horizontal line. s(t) = 2t3 − 3t2 − 12t + 6 for t ≥ 0
    11·1 answer
  • What is Newtons laws​
    7·1 answer
  • Explain how objects in motion have kinetic energy, use examples
    13·1 answer
  • What is the acceleration of a car that slows down from 25.0 m/s to 10.0 m/s in 30 seconds? The car is traveling south.
    11·1 answer
  • A rock is thrown downward from an unknown height above the ground with an initial speed of 10m/s. It strikes the ground 3s later
    12·1 answer
  • What is the mass of a cannonball if a force of 2,500 N gives the cannonball an acceleration of 200m/s2?
    10·2 answers
  • With what maximum precision can its position be ascertained? [hint: ?p=m?v.]
    5·1 answer
  • PLEASE HELP WILL GIVE BRAINLIEST FILE IS ATTACHED
    12·1 answer
  • Energy can come from electricity, but it<br> can also come from water<br> false<br> true
    8·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!