King Arthur's knights use a catapult to launch a rock from their vantage point on top of the castle wall, 14 m above the moat. The rock is launched at a speed of 27 m/s and an angle of 32degrees above the horizontal.
Answer:
v = 2.94 m/s
Explanation:
When the spring is compressed, its potential energy is equal to (1/2)kx^2, where k is the spring constant and x is the distance compressed. At this point there is no kinetic energy due to there being no movement, meaning the net energy in the system is (1/2)kx^2.
Once the spring leaves the system, it will be moving at a constant velocity v, if friction is ignored. At this time, its kinetic energy will be (1/2)mv^2. It won't have any spring potential energy, making the net energy (1/2)mv^2.
Because of the conservation of energy, these two values can be set equal to each other, since energy will not be gained or lost while the spring is decompressing. That means
(1/2)kx^2 = (1/2)mv^2
kx^2 = mv^2
v^2 = (kx^2)/m
v = sqrt((kx^2)/m)
v = x * sqrt(k/m)
v = 0.122 * sqrt(125/0.215) <--- units converted to m and kg
v = 2.94 m/s
Answer:

Explanation:
We have to take into account the expression for the position of the fringes

where m is the number of the maximum, d is the separation of the slits, D is the distance to the screen.
(a) By replacing we obtain

(b) more information is required to solve this point. Please complete the information.
HOPE THIS HELPS!
Momentum can be defined by the formula p=m*V (where m is mass and V is velocity) so if we plug in these numbers:
p = 2kg * 6m/s
p = 12 kgm/s