Answer:
(x-8)^2=-8
Step-by-step explanation:
Just did it
Answer:
- 3log(10) -2log(5) ≈ 1.60206
- no; rules of logs apply to any base. ln(x) ≈ 2.302585×log(x)
- no; the given "property" is nonsense
Step-by-step explanation:
<h3>1.</h3>
The given expression expression can be simplified to ...
3log(10) -2log(5) = log(10^3) -log(5^2) = log(1000) -log(25)
= log(1000/25) = log(40) . . . . ≠ log(5)
≈ 1.60206
Or, it can be evaluated directly:
= 3(1) -2(0.69897) = 3 -1.39794
= 1.60206
__
<h3>2.</h3>
The properties of logarithms apply to logarithms of any base. Natural logs and common logs are related by the change of base formula ...
ln(x) = log(x)/log(e) ≈ 2.302585·log(x)
__
<h3>3.</h3>
The given "property" is nonsense. There is no simplification for the product of logs of the same base. There is no expansion for the log of a sum. The formula for the log of a power does apply:

Numerical evaluation of Mr. Kim's expression would prove him wrong.
log(3)log(4) = (0.47712)(0.60206) = 0.28726
log(7) = 0.84510
0.28726 ≠ 0.84510
log(3)log(4) ≠ log(7)
Answer:
10(3)^x
Step-by-step explanation:
The function contains the points (2,90) and (4,810). Use the general form y=abx to write two equations:
90=ab^2 and 810=ab^4
Solve each equation for a:
a=90/b^2 and a=810/b^4
Since a=a, set the other sides of the equations equal and solve for b.
90/b2=810/b4
Cross multiply, then divide and simplify as follows:
90b^4=810b^2
b^4/b^2=810/90
b^2=90
b^3
Now, use the value of b and the point (2,90) to find the value of a.
90=a(3^2)
a=10
So, substitute answers in original equation for a final answer of f(x)=10(3)^x.
Answer:
f(-3) = 16
Step-by-step explanation:
You substitute -3 to x.
f(-3) = 2(-3)² - 5(-3) - 17
f(-3) = 16.
As for the coordinates, the coordinates plotted in the graph above are (1,-1) and (2,-2).
I believe that the equations answer is around 1170. The answer to the equation is 1172