Answer:
A. Their particles are free to move away from each other.
Explanation:
Let us assume that rocket only runs in initial energy and not using its own to flying.
Also , let upward direction is +ve and downward direction is -ve .
Initial velocity , u = 58.8 m/s .
Acceleration due to gravity ,
.
Final velocity , v - = 0 m/s .
We know , by equation of motion .

Hence, this is the required solution .
Answer:
Yes
Explanation: Electric and magnetic field are known to be inter-related, this implies that for any current carrying conductor there is a resulting magnetic field around the wire ( for example a current carrying conductor deflects a compass) and a magnetic field has been known to produce some amount current based on the<em> </em>principle of electromagnetic induction by Micheal Faraday.
The strength of magnetic field generated by a current carrying conductor is given by Bio-Savart law (purely mathematical) which is
B =
B= strength of magnetic field
I =current on conductor
r = distance on any point of the conductor relative to it center
If a current carrying could generate this magnitude of magnetic field, thus this magnetic field has the ability to interact (exert a force on any magnetic material) with any other magnetic material including a magnet.
Yes, a current carrying conductor can exert a force on a magnetic field
Answer:
1

2
The distance is
Explanation:
From the question we are told that
The maximum speed of the cheetah is 
The maximum of gazelle is 
The distance ahead is 
Let
denote the time which the cheetah catches the gazelle
Gnerally the equation representing the distance the cheetah needs to move in order to catch the gazelle is

=> 
=> 
=> 
Now at t = 7.5 s

=> 
=> 
=>
Hence the for the gazelle to escape the cheetah it must be 55.2 m
The statements that correctly compare the gravitational force with the electrical force are the following:
-The gravitational force can be attractive.
-The electrical force can be repulsive.
-The electrical force can be attractive.
-Any two objects experience a gravitational force between them.