The oxygen atom has 4 valence electrons. Valence electrons are the electrons found in the outermost shell of an atom. These are the electrons that participate in chemical reactions during bonding. Since 4 electrons make up 2 pairs, an oxygen atom is capable of making <em>2 covalent bonds</em>.
B
All cells new oxygen and blood is a way for them to get it
<h3><u>Answer</u>;</h3>
A. When a reaction is at chemical equilibrium, a change in the system will cause the system to shift in the direction that will balance the change and help the reaction regain chemical equilibrium.
<h3><u>Explanation</u>;</h3>
- Le Chatelier's principle states that when a change or a "stress" is placed on a system that is at equilibrium, the system will shift in such a way to relieve that change or stress.
- The stresses include; changing the concentration of reactants or products, altering the temperature in the system and changing the pressure of the system.
- Therefore; <u><em>when a chemical reaction is at equilibrium and experiences a change in pressure, temperature, or concentration of products or reactants, the equilibrium shifts in the opposite direction to offset the change. </em></u>
<span>26.833 liters
Aluminum oxide has a formula of Al</span>₂O₃,<span> which means for every mole of aluminum used, 1.5 moles of oxygen is required (3/2 = 1.5).
Given 42.5 g of aluminum divided by its atomic mass (26.9815385) gives 1.575 moles of aluminum.
Since it takes 1.5 moles of oxygen per mole of aluminum to make aluminum oxide, you'll need 2.363 moles of oxygen atoms.
Each molecule of oxygen gas has 2 oxygen atoms, so the moles of oxygen gas will be 2.363/2 = 1.1815
Finally, you need to calculate the volume of </span>1.1815 <span>moles of oxygen gas.
1 mole of gas at STP occupies 22.7 liters of volume. Therefore,
1.1815 * 22.7 = </span>26.8 liters <span>of oxygen gas.
</span>