No, molecules don’t ever stop moving
Answer:
It is mentioned that the student is mixing chemicals A and B and observes the time taken for the color to change. However, in the experiment, it is noticed that the student has repeated the procedure five times and each time he or she is modifying the concentration of chemical B. Thus, it is clear that the concentration of chemical B is the independent variable in the experiment. An independent variable is illustrated as the variable, which is controlled or modified in the experiment.
Answer:
Mass of carbon dioxide produced = 52.8 g
Explanation:
Given data:
Mass of carbon react = 14.4 g
Mass of oxygen = 56.5 g
Mass of oxygen left = 18.1 g
Mass of carbon dioxide produced = ?
Solution:
C + O₂ → CO₂
Number of moles of C:
Number of moles = mass/ molar mass
Number of moles = 14.4 g/ 12 g/mol
Number of moles = 1.2 mol
18.1 g of oxygen left it means carbon is limiting reactant.
Now we will compare the moles of C with CO₂.
C : CO₂
1 : 1
1.2 : 1.2
Mass of CO₂:
Mass = number of moles × molar mass
Mass = 1.2 mol × 44 g/mol
Mass = 52.8 g
Heat energy is required.
In distillation, the solution is first heated, where heat energy is required, such as using a bunsen burner.
When the solution is heated, the water may reach its boiling point and evaporate. However, salt does not. When water molecules evaporates, it travels through a condenser that cools it down into liquid again. Therefore we get pure water. Salt is also obtained in the original beaker.
Therefore to first start this process, heat energy is required.