In an undisturbed sequence of layers of rocks, the younger layers lie on top of the older layers
<h3>Answer:</h3>
162.43 g of FeCl₂
<h3>
Explanation:</h3>
Step 1: Calculate mass of Fe;
As,
Density = Mass ÷ Volume
Or,
Mass = Density × Volume
Where Volume is the volume of water displaced = 10.4 mL
Putting values,
Mass = 7.86 g.mL⁻¹ × 10.4 mL
Mass = 81.744 g of Fe
Step 2: Calculate amount of FeCl₂;
The balance chemical equation is as follow,
Fe + 2 HCl → FeCl₂ + H₂ ↑
According to this equation,
55.85 g (1 mol) Fe produced = 110.98 g (1 mol) of FeCl₂
So,
81.744 g Fe will produce = X g of FeCl₂
Solving for X,
X = (81.744 g × 110.98 g) ÷ 55.85 g
X = 162.43 g of FeCl₂
Answer:
The answer to your question is: 24 grams of D
Explanation:
To answer this question we need to remember the Lavoisier law of conservation of mass, which says that in a chemical reaction matter is neither created nor destroyed.
This means that the amount of matter stays the same.
Then, the reaction is
A + B ⇒ C + D
26 g 12 g 14 g x
mass
of reactants 38 g ? mass of products, but it must be
equal to the mass of products
Then 14g + x = 38
x = 38 - 14
x = 24 g of D
Answer:
78 kPa
Explanation:
The total pressure is the sum of the partial pressures:
240 = Pa + Pb + Pc
240 = 107 + 55 + Pc
Pc = 78 kPa
Answer : The value of 'R' is 
Solution : Given,
At STP conditions,
Pressure = 1 atm
Temperature = 273 K
Number of moles = 1 mole
Volume = 22.4 L
Formula used : 
where,
R = Gas constant
P = pressure of gas
T = temperature of gas
V = volume of gas
n = number of moles of gas
Now put all the given values in this formula, we get the values of 'R'.


Therefore, the value of 'R' is
.