We will first convert all units to meters and then solve the problem.
We are given that:
1000 mm = 1 m
120 mm = ?? meters
using cross multiplication:
120 mm = (120*1) / 1000 = 0.12 m
Now, when the two objects are placed over each other, their total height is the result of summation of both heights, therefore:
total height = 0.12 + 1.5 = 1.62 m
Based on the above calculations, the correct choice is:
<span>b) 1.62 m </span>
Current I is the rate at which charge moves through an area A, such as the cross-section of a wire
<h2>The K.E of the charge is 1.02 x 10⁻¹⁷ J</h2>
Explanation:
When the charge of 2e is placed in between the plates .
The force applied on this charge by plates is = q E
here q is the magnitude of charge = 2 e = 2 x 1.6 x 10⁻¹⁹ C
and E is the magnitude of electric field intensity
The work done = Force x displacement
Thus W = q E x S
here S is displacement
Therefore W = 2 x 1.6 x 10⁻¹⁹ x 4 x 8
= 1.02 x 10⁻¹⁷ J
This work will be converted into the kinetic energy of charge .
Thus K.E = 1.02 x 10⁻¹⁷ J
Answer:
All of the above
Explanation:
Sound waves are mechanical waves consisting of the oscillations of the particles in a medium. They are longitudinal waves, which means that the vibrations of the particles occur in a direction parallel to the direction of propagation of the wave.
This type of wave consists of alternating regions where:
- the density of the particles is higher: these regions are called compressions, and they correspond to high pressure regions
- the density of the particles is lower: these regions are called rarefactions, and they correspond to low pressure regions