I believe the answer would be C. slows down, hope this helps:)
Answer:
The temperature associated with this radiation is 0.014K.
Explanation:
If we assume that the astronomical object behaves as a black body, the relation between its <em>wavelength</em> and <em>temperature</em> is given by Wien's displacement law.

where,
λmax is the wavelength at the peak of emission
b is Wien's displacement constant (2.89×10⁻³ m⋅K)
T is the absolute temperature
For a wavelength of 21 cm,

Answer: 6
Explanation:
1) The structure shown is:
3CH₃CH₂O
2) The molecule is CH₃CH₂O. The chemical formula is CH₃CH₂O. The subscripts indicate the number of atoms of the corresponding atom in each molecule.
Then, there are 1 + 1 = 2 atoms of C, 3+ 2 = 5 atoms of H, and 1 atom of O.
3) The number in front of the molecule is the coefficient. It is 3, and it tells the number of molecules.
So, there are 3 molecules, which means that you have 3 times a many atoms as calculated previously.
That is 3×2 = 6 atoms of C, 3 × 5 = 15 atoms of H, and 3 × 1 = 3 atoms of O.
Then, the number of atoms of carbon (C) in 3 molecules is 6
Answer:
2.4 hrs
Explanation:
The constant speed of the truck for 6 hrs can be calculated by: speed=distance/time. Speed =(876-228)/6=648/6=108m/s. So the decreased speed = (108-13)=95m/h. Now, speed =distance /time We get 95m/h = 228/t. t=228/95 hrs = 2.4 hrs PLEASE MARK ME THE BRAINLIEST!!
Answer:
We need 10.14 grams of sodium bromide to make a 0.730 M solution
Explanation:
Step 1: Data given
Molarity of the sodium bromide (NaBr) = 0.730 M
Volume of the sodium bromide solution = 135 mL = 0.135 L
Molar mass sodium bromide (NaBr) = 102.89 g/mol
Step 2: Calculate moles NaBr
Moles NaBr = Molarity NaBr * volume NaBr
Moles NaBr = 0.730 M * 0.135 L
Moles NaBr = 0.09855 moles
Step 3: Calculate mass of NaBr
Mass NaBr = 0.09855 moles * 102.89 g/mol
Mass NaBr = 10.14 grams
We need 10.14 grams of sodium bromide to make a 0.730 M solution