1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Ket [755]
2 years ago
7

Which of the following is an example of a plant virus?

Biology
1 answer:
tester [92]2 years ago
5 0

Answer:neauspora

Explanation:

You might be interested in
The curly toe phenotype is controlled by 4 genes that act in an additive manner. The environment does not have an effect on this
Sergio [31]

Answer:

  1. What is the highest number of risk units an individual can have with this model? 48 units of risk
  2. What is the phenotype of an individual of genotype AaBbCCDd? The individual has curly toes
  3. Is it possible for them to have a child with curly toes?

        Yes, the couple can have children with curly toes.

Explanation:

<u>Available data</u>:

  • The curly toe phenotype is controlled by 4 diallelic additive genes
  • Genes A, B, C, D  
  • A dominant allele has 6 units of risk
  • A recessive allele has 2 units of risk
  • Individuals with more than 35 units of risk have curly toes
  • Individuals with 35 or fewer risk units have straight toes

The term quantitative heritability refers to the transmission of a phenotypic trait in which expression depends on the additive effect of a series of genes.  

Polygenic heritability occurs when a trait results from the interaction of more than one gene. And these genes can also have more than two alleles. The action of many genes and alleles can cause many different combinations that are the reason for genotypic graduation.  

Quantitative traits are those that can be measure, such as longitude, weight, eggs laid per female, among others. These characters do not group individuals by any precise and clear categories. Instead, they group individuals in many different categories that depend on how the genes were intercrossed and distributed during meiosis. The result depends on the magnitude in which each allele contributes to the final phenotype and genotype. When they interact, they create a gradation in phenotypes, according to the level of contribution.

According to this information, and knowing how each allele contributes to the risk, we can say that the minimum units of risk are 16, determined by the recessive genotype aabbccdd. Each recessive allele contributes with 2 units of risk, so (aa=4units + bb=4 units + cc=4 units + dd=4 units) =  16 units.

Each time a dominant allele is present in the genotype, it adds 6 units to the total risk.    

What is the highest number of risk units an individual can have with this model?

48 units of risk, which corresponds to the genotype AABBCCDD. Each dominant allele contributes 6 units to the risk. There are 8 dominant alleles, so, 8x6=48 units.

What is the phenotype of an individual of genotype AaBbCCDd?

The individual has curly toes because it has a risk of 36 units, which is superior to the limit of 35 units. Dominant alleles A, B, C, C, D contribute with 30 units of risk (6x5), and recessive alleles a, b, d contribute 6 units of risk (3x2).

Cross:

Parentals) AAbbCcDd   x   AaBbCCDd

Gametes) AbCD, AbcD, AbCd, Abcd

               ABCD, ABCd, AbCD, AbCd, aBCD, aBCd, abCD, abCd

Punnett square)  AbCD                 AbcD               AbCd               Abcd

          ABCD    AABbCCDD     AABbCcDD     AABbCCDd     AABbCcDd

          ABCd    AABbCCDd      AABbCcDd     AABbCCdd      AABbCcdd

          AbCD    AAbbCCDD      AAbbCcDD    AAbbCCDd     AAbbCcDd

         AbCd     AAbbCCDd       AAbbCcDd     AAbbCCdd     AAbbCcdd

         aBCD     AaBbCCDD      AaBbCcDD      AaBbCCDd     AaBbCcDd

         aBCd     AaBbCCDd      AaBbCcDd      AaBbCCdd     AaBbCcdd

         abCD     AabbCCDD      AabbCcDD      AabbCCDd    AabbCcDd

         abCd      AabbCCDd      AabbCcDd      AabbCCdd        AabbCcdd

F1) 16 /32 = 1/2 individuals in the progeny are expected to have curly toes

     16 /32 = 1/2 individuals are expected to have straight toes

Is it possible for them to have a child with curly toes?

Yes, the couple can have children with curly toes.

To have curly toes, individuals must have more than 35 units of risk.

To have more than 35 units, individuals´ genotypes must carry at least 5 dominant alleles (which equal 30 units).

8 0
2 years ago
Both lipids and carbohydrates are important in animal cells because both do what
elena55 [62]
Both lipids and carbohydrates are important in animal cells because store energy. The main biological functions of lipids include storing energy, signaling, and acting as structural components of cell membranes. Carbohydrates on the other hand have six major functions in the body; including providing energy and regulation of blood glucose, sparing the use of proteins for energy, breakdown of fatty acids and preventing ketosis. 
7 0
3 years ago
Where does the primary source of energy needed for life come from?
vodka [1.7K]
Answer: A Solar Energy (The Sun)
6 0
3 years ago
Read 2 more answers
Answer the following questions about circulation of baby after birth.
artcher [175]
1. Gases are exchanged inside the lungs through the surfaces of thousands of alveoli to allow the diffusion of carbon dioxide and <span>oxygen
2. </span>Wastes are removed through the excretory system after passing through either the kidneys urine or the digestive tract feces
3.Blood is redirected after a change in blood pressure after birth. Blood now flows through the pulmonary artery to the lungs to receive oxygen
4. The lungs alveoli, the intestines, the pulmonary artery, and the excretory system
hope it helps
7 0
3 years ago
Select the true statements about protein secondary structure.
saul85 [17]

Answer:

C.The β‑pleated sheet is held together by hydrogen bonds between adjacent segments.

Explanation:

Hello!

The most common secondary structures are α-helix and β-sheets. The structures are defined by regular hydrogen bonds formed between the N-H and C=O groups of the amino acids that form the chain. These structures form in segments of the protein as an intermediate before it folds into the 3D tertiary structure.

<u>α helix  </u>

It is a cylindrical structure that comprehends a helical backbone, while the side chains extend outward in a helical distribution. The α-helix stabilizes through hydrogen bonds between the amines and carbonyls groups of the backbone. Each carbonyl group forms a hydrogen bond with the amine group four residues later in the main chain. Thus, except for the amino acids near the end of the α-helix, all the carbonyls and amines groups in the main chain are linked by hydrogen bonds. Each residue corresponds to a translation of 1,5Ǻ and a turn of 100º this equals 3,6 residues per turn.

From the observer point of view, if the rotation of the helix is clockwise or right-handed, it's called dextrorotation and if the rotation is counterclockwise or left-handed it's called levorotation. Dexorotation or dextrogyre is the most common rotation of α-helixes in proteins. Levorotation or levogyre is very rare but can be found in proteins with a large content of achiral glycine.

<u>β-sheets (β-pleated sheets) </u>

This structure consists of at least two β-strands (polypeptide chains), the strands conform a backbone of three to ten amino acids in an extended formation that connects laterally with hydrogen bonds. The distance between adjacent amino acids in a β-strand is approximately 3,5Ǻ in contrast to the 1,5Ǻ distance of an α helix. The chains that form a β-sheet have directionality conferred by their N-terminus and C-terminus. Adjacent β-strands can form hydrogen bonds in antiparallel, parallel or mixed arrangements. In the antiparallel arrangement, the adjacent strands are said to have opposite directions (N-C vs C-N) this allows the bonds to be established between the amines and carbonyls groups of each amino acid with the carbonyls and amines of the adjacent amino acid. This way the bonds between carbonyls and amines are planar, which allows strong interstrand stability.

In the parallel arrangement, the adjacent strands have the same direction (N-C vs N-C). In this type of arrangement, each amine forms a hydrogen bond with the carbonyl of the adjacent amino acid, but its carbonyl group forms a hydrogen bond with the amine group of the amino acid two residues later.

I hope you have a SUPER day!

6 0
3 years ago
Read 2 more answers
Other questions:
  • Describe how each of the following brain scanning techniques would aid the doctors in making their diagnosis of these symptoms:
    11·1 answer
  • What type of enzyme in the replisome catalyzes addition of nucleotides to the growing dna strands?
    8·1 answer
  • Why do body cells in plants and animals have an even number of chromosomes?
    11·1 answer
  • The sum of all the genes in a population is referred to as ______
    10·2 answers
  • The only way to test a scientific hypothesis is to perform an experiment true or false
    13·1 answer
  • Which group of organic compounds stores genetic information?
    6·1 answer
  • John and Jane are planning a family, but since each has a brother who has sickle-cell disease, they are concerned that their chi
    13·1 answer
  • Which type of muscle tissue has cylindrical cell with multiplie nuclei striated muscle and voluntary regulation?
    9·1 answer
  • 3. When a single-celled organism splits into 2 new organisms it is called _________________. *
    5·2 answers
  • GIVING BRAINLIEST, FIVE STARS AND THANKS!
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!