Answer:
196000 N
Explanation:
The following data were obtained from the question:
Height (h) = 10 m
Area (A) = 2 m²
Force (F) =.?
Next, we shall determine the pressure in the tank.
This can be obtained as follow:
P = dgh
Where
P is the pressure.
d is the density of the liquid.
g is acceleration due to gravity
h is the height.
Height (h) = 10 m
Density (d) of water = 1000 kg/m³
Acceleration due to gravity (g) = 9.8 m/s²
Pressure (P) =...?
P = dgh
P = 1000 × 9.8 × 10
P = 98000 N/m²
Therefore, the pressure acting on the tank is 98000 N/m²
Finally, we shall determine the force of gravity acting on the column of water as follow:
Area (A) = 2 m²
Pressure (P) = 98000 N/m²
Force (F) =.?
Pressure (P) = Force (F) /Area (A)
P = F /A
98000 = F/ 2
Cross multiply
F = 98000 × 2
F = 196000 N
Therefore, the force of gravity acting on the column of water is 196000 N
Answer:
Below
Explanation:
To solve for d rearrange the formula v = (d)(t) to:
d = v / t
I'm not to sure if you are using different variables but usually in physics the formula for velocity is v = d / t not v = dt
If you wanted to solve for displacement you would do:
d = (v)(t)
Hope this helps!
Answer:
a) I = 13.38 kg m / s, b) F = 1,373 10³ N
Explanation:
The impulse is given by the relation
I = ∫ F dt = Δp
I = p_f -p₀
I = m (v_f - v₀)
take the ball's exit direction as positive, whereby the ball velocities
v₀ = -90mph, the final velocity v_f = + 54 m / s
Let's reduce the units to
I = 0.142 [54- (-40.23) ]
the SI system
v₀ = - 90 mph (1609.34 m / 1 mile) (1h / 3600 s = -40.23 m / s
m = 142 g (1kg / 1000) = 0.142 kg
we calculate
I = 0.142 [54- (-40) ]
I = 13.38 kg m / s
b) let's use the definition of momentum
I = ∫ F .dt
I = F ∫ dt
F = I / t
F = 13.38 / 0.008
F = 1,373 10³ N
Almost all rocks made of minerals, but different rocks contain different mixtures of minerals. Granite<span>, for example, consists of quartz, </span>feldspar<span>, and mica.
</span>
Answer:
Minimum DC current
Ampere
Voltage
V
Explanation:
Here in this questions three resistors are used in series
Resistance of cap circuit

Here
is the resistance per cap
Resistance of bus wire

Where
is the resistance per
feet of bus wire of gauge 16
Resistance of firing line

where
is the resistance per
feet of bus wire of gauge 14
Total resistance is equal to

Current in firing line is equal to

Voltage is equal to product of resistance and current
