Answer:
118 N
Explanation:
Given mass of the block, m = 4.00kg.
The acceleration of the elevator, a = 3.0 m/s^2.
As elevotar attaced with spring scale and accelerating upward
(block and elevator), so total force

Here, mg is the weight of the block downward direction.
or

substitute the given value, we get

= 117.6 N = 118 N.
Thus, the reading on the spring scale to 3 significant figures is 118 N.
<span> For any body to move in a circle it requires the centripetal force (mv^2)/r.
In this case a ball is moving in a vertical circle swung by a mass less cord.
At the top of its arc if we draw its free body diagram and equate the forces in radial
direction to the centripetal force we get it as T +mg =(mv^2)/r
T is tension in cord
m is mass of ball
r is length of cord (radius of the vertical circle)
To get the minimum value of velocity the LHS should be minimum. This is possible when T = 0. So
minimum speed of ball v at top =sqrtr(rg)=sqrt(1.1*9.81) = 3.285 m/s
In the second case the speed of ball at top = (2*3.285) =6.57 m/s
Let us take the lowest point of the vertical circle as reference for potential energy and apllying the conservation of energy equation between top & bottom
we get velocity at bottom as 9.3m/s.
Now by drawing the free body diagram of the ball at the bottom and equating the net radial force to the centripetal force
T-mg=(mv^2)/r
We get tension in cord T=13.27 N</span>
Answer:
The height will be 4 times.
Explanation:
Given that,
The speed at the bottom of the hill doubled.
We need to calculate the height
Using conservation of energy




Therefore,

Here, m and g are constant
Hence, The height will be 4 times.
The molarity remains the same so the ratio does not change