Answer:
Your answer will be 6.0kg•m/s
Explanation:
In the given question all the required details d given. Using these information's a person can easily find the momentum of the object. In the question it is already given that the mass of the object is 5 kg and the velocity at which it is traveling is 1.2 m/s.We know the equation of finding momentum asMomentum = mass * velocity = 5 * 1.2 = 6So the momentum of the object is 6 Newton.
Answer:
Electromagnetic radiation is an electric and magnetic disturbance traveling through space at the speed of light (2.998 × 108 m/s). It contains neither mass nor charge but travels in packets of radiant energy called photons, or quanta.
Solving this using the time, we know that range = horizontal velocity x time of flight
since
there are no horizontal forces acting on the ball, there are no
horizontal accelerations and the initial horizontal velocity of 36 cos
28 will be constant throughout. If we use the correct time of flight given the launch parameters, we have
range = 36 cos 28 x 3.44 s = 109.3 m
The magnitude of the unknown height of the projectile is determined as 16.1 m.
<h3>
Magnitude of the height</h3>
The magnitude of the height of the projectile is calculated as follows;
H = u²sin²θ/2g
H = (36.6² x (sin 29)²)/(2 x 9.8)
H = 16.1 m
Thus, the magnitude of the unknown height of the projectile is determined as 16.1 m.
Learn more about height here: brainly.com/question/1739912
#SPJ1
Answer:
a. speed, v = 0.97 c
b. time, t' = 20.56 years
Given:
t' = 5 years
distance of the planet from the earth, d = 10 light years = 10 c
Solution:
(a) Distance travelled in a round trip, d' = 2d = 20 c = L'
Now, using Length contraction formula of relativity theory:
(1)
time taken = 5 years
We know that :
time = 
5 =
(2)
Dividing eqn (1) by v on both the sides and substituting eqn (2) in eqn (1):
Squaring both the sides and Solving above eqution, we get:
v = 0.97 c
(b) Time observed from Earth:
Using time dilation:


Solving the above eqn:
t'' = 20.56 years