Answer:
See explanation.
Explanation:
A. 2s is incorrect, the right arrow should be pointing downwards.
B. In 2p, the last box has 3 arrows. This is invalid. Each box can only store 2 arrows(electrons). The last arrow should be moved to a 3p orbital (new box).
C. In this one, the arrows switched directions (left is down and right is up). You could fix each box or just the last one (in 3p) to point downwards.
0.11 moles of the gas are present in the sample of dry gas.
Explanation:
Data given:
mass of the gas = 2.1025 grams
volume of the gas = 2.850 litres
temperature = 22 degrees (273.15+22) = 295.15 K
Pressure = 740 mm Hg or 0.973 atm
moles of the gas =?
R = 0.08206 atmL/Mole K
From the ideal gas law the number of moles can be calculated in the sample of dry gas. Number of moles will be determined by the pressure exerted, volume and temperature of the gas.
The formula:
PV = nRT
n = 
putting the values in the above equation:
n = 
= 0.11 moles
0.11 moles of the dry gas is present in the sample given.
Answer:
39 mol AgNO3
Explanation:
We have the equation 4HNO3 + 3Ag -----> 3AgNO3 + NO + 2H2O
We want to calculate the number of silver nitrate (AgNO3) moles that would be produced from 52 moles of nitric acid ( HNO3 )
We can calculate this by using mole ratio as well as dimensional analysis.
The mole ratio of Silver nitrate to nitric acid based on the balanced equation is 3AgNO3:4HNO3.
Using this we can create a table: The table is attached.
Breakdown of the table.
The moles of nitric acid cancel out and we multiply 52 by 3/4 to get 39 moles of Silver nitrate.
D. Yep, D is the answer, alright.