Answer:
Percent error = 12.5%
Explanation:
In a measurement you can find percent error following the formula:
Percent error = |Measured value - Accepted Value| / Acepted value * 100
Based on the data of the problem, accepted value is 22.4L and the measured Value (Value of Sara) was 19.6L.
Replacing:
Percent error = |Measured value - Accepted Value| / Acepted value * 100
Percent error = |19.6L - 22.4L| / 22.4L * 100
Percent error = |-2.8L| / 22.4L * 100
Percent error = 2.8L / 22.4L * 100
Percent error = 12.5%
Answer:
v = 534.5mL
m = 597.15g
Density = 9.23g/mL
Density = 9.125g/mL
Explanation:
Density = mass/ volume
For the first question
Density = 1.59g/mL
Mass = 834.01g
Volume = ?
Using the above formula we have 1.59 = 834.01/v
v = 834.01/1.59
v = 534.5mL
For the second question
Density =0.9167g/mL
Volume = 651.41mL
Mass =?
Using the above formula we have
0.9167 =m/651.41
Cross multiply
m = 0.9167 x 651.41
m = 597.15g
For the third question
Mass =803.44g
Volume=87.03mL
Density =?
Density = 803.44/87.03
= 9.23g/mL
For the fourth
Density = 56.85/6.23
= 9.125g/mL
Answer:
[Ag⁺] = 5.0x10⁻¹⁴M
Explanation:
The product solubility constant, Ksp, of the insoluble salts PbI₂ and AgI is defined as follows:
Ksp(PbI₂) = [Pb²⁺] [I⁻]² = 1.4x10⁻⁸
Ksp(AgI) = [Ag⁺] [I⁻] = 8.3x10⁻¹⁷
The PbI₂ <em>just begin to precipitate when the product [Pb²⁺] [I⁻]² = 1.4x10⁻⁸</em>
<em />
As the initial [Pb²⁺] = 0.0050M:
[Pb²⁺] [I⁻]² = 1.4x10⁻⁸
[0.0050] [I⁻]² = 1.4x10⁻⁸
[I⁻]² = 1.4x10⁻⁸ / 0.0050
[I⁻]² = 2.8x10⁻⁶
<h3>[I⁻] = 1.67x10⁻³</h3><h3 />
So, as the [I⁻] concentration is also in the expression of Ksp of AgI and you know concentration in solution of I⁻ = 1.67x10⁻³M:
[Ag⁺] [I⁻] = 8.3x10⁻¹⁷
[Ag⁺] [1.67x10⁻³] = 8.3x10⁻¹⁷
<h3>[Ag⁺] = 5.0x10⁻¹⁴M</h3>
Answer: its a single replacement reaction