Answer:
Tripling the concentration of A will triple the reaction rate.
Explanation:
- For a first–order reaction hat has a rate law:
<em>Rate = k[A].</em>
- It is clear that the reaction rate is directly proportional to the concentration of A.
<em>Rate ∝ [A].</em>
<u><em>So, Tripling the concentration of A will triple the reaction rate.</em></u>
Assuming that the gas is ideal, we can use the ideal gas equation PV=nRT to calculate for the number of moles. Then, multiply the molar mass of the gas to obtain the mass. We do as follows:
PV = nRT
n = PV / RT
n = 1.1 atm (3.7x10^9 L) / 0.08205 L-atm/mol-K (280.15) = 177061931.3 mol H2
Mass = (177061931.3 mol H2) 18.02 g/mol ( 1 kg / 1000g) ( 2.2 lb / 1 kg ) = 7019443.21 lb H2
Answer:
I would expect to extract the acetic acid.
Explanation:
In the first step, since we are adding a concentrated acid,<u> it will react with the bases present in the mixture (diethylamine and ammonia) </u><u>forming salts</u><u>, </u><u>which are soluble in water</u>. Therefore, after draining the aqueous layer, we will have phenol and acetic acid left in the organic layer.
In the second step, we are adding a diluted base, so it will react with a strong acid. This compound is acetic acid, and its salt will be present in the aqueous layer. Phenol will be left on the organic layer.
Answer: 63.88 atm
Explanation:
To answer this, we use the formula PV = nRT since the asumption is that the gas has an ideal behavior
where number of mole = 2.60 mol, R(gas constant) = 0.08205746 L atm/K mol,
T = 251 ∘C = (251 + 273) K = 524 K, Volume = 1.75 L
Making Pressure the subject of the formula, we have
P = nRT/V = 2.6 * 0.08205746 * 524/2.75 = 63.88 atm
During a neutralization reaction phosphoric acid reacts with potassium hydroxide to produce potassium phosphate and water, the reaction occurs with a 64.9% yield.
A neutralization reaction is a chemical process in which an acid and a base combine to produce salt and water as the end products. In a neutralization process, a mixture of H+ ions and OH- ions results in the formation of water.
Potassium phosphate and water are created when potassium hydroxide and phosphoric acid combine. The reaction's balanced equation is as follows: K3PO4(aq) + 3H2O = 3KOH(aq) + H3PO4(aq) (l) If six moles of potassium hydroxide react, phosphoric acid is used in the reaction.
To learn more about neutralization reaction please visit -
brainly.com/question/26786272
#SPJ1