Answer:
C₃H₉N
Explanation:
The empirical formula of a compound is the fundamental and basic possible formula that shows the mole ratio of the atoms of each element in a molecule of the compound.
mole ratio of carbon = 60.94/12 = 5.078
mole ratio of hydrogen = 15.36/1 = 15.36
mole ratio of nitrogen = 23.70/14 = 1.693
Now; we will divide by the smallest value
So; carbon = 5.078/1.693 = 2.99 ≅ 3.0
hydrogen = 15.36/1.693 = 9.07 ≅ 9.0
nitrogen = 1.693/1.693 = 1 ≅ 1
Thus, the empirical formula is = C₃H₉N
The mass of NaCl needed for the reaction is 91.61 g
We'll begin by calculating the number of mole of F₂ that reacted.
- Gas constant (R) = 0.0821 atm.L/Kmol
PV = nRT
1.5 × 12 = n × 0.0821 × 280
18 = n × 22.988
Divide both side by 22.988
n = 18 / 22.988
n = 0.783 mole
Next, we shall determine the mole of NaCl needed for the reaction.
F₂ + 2NaCl —> Cl₂ + 2NaF
From the balanced equation above,
1 mole of F₂ reacted with 2 moles of NaCl.
Therefore,
0.783 mole F₂ will react with = 0.783 × 2 = 1.566 moles of NaCl.
Finally, we shall determine the mass of 1.566 moles of NaCl.
- Molar mass of NaCl = 23 + 35.5 = 58.5 g/mol
Mass = mole × molar mass
Mass of NaCl = 1.566 × 58.5
Mass of NaCl = 91.61 g
Therefore, the mass of NaCl needed for the reaction is 91.61 g
Learn more about stiochoimetry: brainly.com/question/25830314
pV = nRT
p = nRT/V
p= 1 x 0.08205 x 1000/ 2
p = 41.025 Pa
Edit: The unit should be atm instead of Pa, as pointed out by a nice human being.
Answer:
have luster i think i dont know
Explanation:i need points
Answer:
A
Explanation:
Recall that Δ<em>H</em> is the sum of the heats of formation of the products minus the heat of formation of the reactants multiplied by their respective coefficients. That is:
Therefore, from the chemical equation, we have that:
Remember that the heat of formation of pure elements (e.g. H₂) are zero. Substitute in known values and solve for hydrazine:
In conclusion, our answer is A.