Answer:
klklklkllkllklkklkllkl
Explanation:
Cuz thats what you said.. and why not :)
Answer: 4.15234 m
512 g H2O *
= 0.512 kg H2O
Nitric Acid: HNO3 = 1.008 + 14.007 + 3(15.999) = 63.012 g/mol
H = 1.008 g/mol
N = 14.007 g/mol
O3 = 3*15.999
134 g HNO₃ *
= 2.126 mol
m =
= 4.15234 m
I think it’s c cause height is what determines gravitational potential energy
We are given the molar mass of Molybdenum as 95.94 g/mol. Also, the chemical symbol for Molybdenum is Mo. This question is asking for the amount of molecules of molybdenum in a 150.0 g sample. However, since molybdenum is a metal and it is in the form of solid molybdenum, Mo (s), it is not actual a molecule. A molecule has one or more atom bonded together. We will instead be finding the amount of atoms of Molybdenum present in the sample. To do this we use Avogadro's number, which is the amount of atoms/molecules of a substance in 1 mole of that substance.
150.0 g Mo/ 95.94 g/mol = 1.563 moles of Mo
1.563 moles Mo x 6.022 x 10²³ atoms/mole = 9.415 x 10²³ atoms Mo
Therefore, there are 9.415 x 10²³ atoms of Molybdenum in 150.0 g.
Answer:
They would produce a repulsive force to another
Explanation:
A positive particle approaching another positive particle will repulse it.
According to coulomb's law "like charges repel one another and unlike charges attract".
A charge is an intrinsic property of any matter.
When like charges e.g positive and positive or negative and negative charges are in the vicinity of one another, they repel each other.
When unlike charges; positive and negative are brought together, they simply attract one another.
Therefore, we expect that a positive particle approaching another positive particle will repel one another.