Answer:
A: 1.962
B: 3.924
Explanation:
g = G *M /R^2
g = 9.807*M/R^2 the gravitational constant of ground level on earth is about 9.807
g = 9.807*5lbs/R^2 the average brick is about 5 pounds.
g = 9.807*5*10^2. I'm assuming the height is around ten feet to help you out.
with these numbers plugged in you get an acceleration of 0.4905 a final velocity after 4 seconds 1.962. It's height fallen after 4 seconds is 3.924.
( M = whatever the brick weighs it's not specified in the question)
(R = the distance from the ground or how high the scaffold is)
(hopefully you can just plug your numbers in there hope this helps)
1)Baby bird cannot fly. Their mother has to feed \bf\underline{them}them
2. Vijay likes riding my bicycle. I sometimes lend \bf\underline{it}it to \bf\underline{him}him
3. Sooraj and I are brothers. \bf\underline{we\:both}weboth share the same bedroom.
4. Ravina isn't well. Dad is taking to the doctor. (No personal pronouns required)
<h3>5. My sister is a teacher. \bf\underline{She}She teaches Maths.</h3>
Answer:
Explanation:
<u>Simple Pendulum</u>
It's a simple device constructed with a mass (bob) tied to the end of an inextensible rope of length L and let swing back and forth at small angles. The movement is referred to as Simple Harmonic Motion (SHM).
(a) The angular frequency of the motion is computed as
We have the length of the pendulum is L=0.81 meters, then we have
(b) The total mechanical energy is computed as the sum of the kinetic energy K and the potential energy U. At its highest point, the kinetic energy is zero, so the mechanical energy is pure potential energy, which is computed as
where h is measured to the reference level (the lowest point). Please check the figure below, to see the desired height is denoted as Y. We know that
And
Solving for Y
The potential energy is
The mechanical energy is, then
(c) The maximum speed is achieved when it passes through the lowest point (the reference for h=0), so the mechanical energy becomes all kinetic energy (K). We know
Equating to the mechanical energy of the system (M)
Solving for v
Work is defined as the force times the distance which is mathematically expressed W = Fxd. The given force is 5x10^4 and the distance is 10000 m (the distance is converted as meter because Nm = J) the work done by the wind is W = 5x10^4 N (10000) = 500 x 10^6 Joules. I hope it answered your question