B. All atoms of silver have the same atomic number but different numbers of neutrons in the nucleus.
Answer:
the answer is A
Explanation:
because abiotic things are non-living things
The molecule with higher dipole moment is COFH because the geometry of the molecule in the COF2 nearly cancel the dipolar moment of each other. To be more clear:
The dipolar moment is the vectorial sum of all bond moments in the molecule or dipolar moment of each bond. The dipolar moment of a molecule with three or more atoms is determined by bond polarity as their geometry.
COF2 has a trigonal planar structure which are symmetric. The electronegativity of oxygen is slightly different regarding fluor. So as you can see in the image, the electronic density is specially displaced to the fluor atoms, but either to the oxygen atom.
COFH has a trigonal structure but differs from COF2 because there is an hydrogen who is donating it's electronic density, so in this zone the electronic density is less than over oxygen or fluor. That makes bond angles be different between them.
Tin metal reacts with hydrogen fluoride to produce tin(II) fluoride and hydrogen gas according to the following balanced equation.
Sn(s)+2HF(g)→SnF2(s)+H2(g)
Sn(s)+2HF(g)→
SnF
2
(s)+
H
2
(g)
How many moles of hydrogen fluoride are required to react completely with 75.0 g of tin?
Step 1: List the known quantities and plan the problem.
Known
given: 75.0 g Sn
molar mass of Sn = 118.69 g/mol
1 mol Sn = 2 mol HF (mole ratio)
Unknown
mol HF
Use the molar mass of Sn to convert the grams of Sn to moles. Then use the mole ratio to convert from mol Sn to mol HF. This will be done in a single two-step calculation.
g Sn → mol Sn → mol HF
Step 2: Solve.
75.0 g Sn×1 mol Sn118.69 g Sn×2 mol HF1 mol Sn=1.26 mol HF
75.0 g Sn×
1
mol Sn
118.69
g Sn
×
2
mol HF
1
mol Sn
=1.26 mol HF
Step 3: Think about your result.
The mass of tin is less than one mole, but the 1:2 ratio means that more than one mole of HF is required for the reaction. The answer has three significant figures because the given mass has three significant figures.
Answer:
1. Changing Beam Material
2. Corrugation
3. Changing Beam form
4. Steel Reinforcing Bars
Explanation:
Changing Beam Material
Some materials are stronger when used in beams than others. Beams made of steel for instance are stronger than beams made of wood. Therefore changing material can improve the strength of the beam. It is quite important to take into account the weights of the material though as different structures have different requirements.
Corrugation.
You can fold the beam into triangular shapes to increase strength. If you look at roofs you will notice that they are folded and this increased their strength. The same logic can be applied to beams.
Changing Beam Form
Another way to make Beams stronger is to change their form or rather their shape. Straight beams are not as strong as I-beams for instance. I-beams look like the capital letter I with the lines at both ends. I-beams are usually used in construction which shows that they are quite strong.
Steel Reinforcing Bars
When placed in concrete beams, Steel Reinforcing Bars which are also called Rebar can help strengthen a beam by helping it withstand the forces of tension. A concrete beam with Rebar inside it is known as Reinforced Concrete.