Answer:
In case of low-mass stars,the outer layers of the low mass stars are expelled as the core collapses such that the outer layers form a planetary nebula.
Explanation:
In case of low-mass stars,the outer layers of the low mass stars are expelled as the core collapses such that the outer layers form a planetary nebula. The core remains as a white dwarf and finally become a black dwarf as it cools down. A low mass star consumes its core hydrogen and turns it into helium over its lifetime.
Answer:
nonpolar covalent
Explanation:
Comparing their electronegativities will help determine the type of bond. Electronegativity is a measure of the tendency of an atom to attract a bonding pair of electrons. The difference in electronegativity (ΔEN) is used to determine bond type. Hydrogen has an electronegativity of 2.20 and sulfur has 2.58. The difference is 0.38,so the electrons are shared in a nonpolar covalent bond.
Answer:
136.36 mL
Explanation:
Here we have to use the dilution formula
From C1V1= C2V2
Where;
C1= initial concentration of the solution= 12.0 M
C2= final concentration of the solution= 2.20 M
V1 = initial volume of the solution= 25.0 ml
V2= final volume of the solution= ?????
Then recall;
C1V1=C2V2
V2 = C1V1/C2
Substituting values from the parameters given;
V2= 12.0 × 25.0 / 2.20
V2= 136.36 mL
Answer:
The number of electrons in a neutral atom is equal to the number of protons. The mass number of the atom (M) is equal to the sum of the number of protons and neutrons in the nucleus.
sorry if im wrong
Explanation:
The given chemical reaction is:

Δ
∑BE(reactants)-∑BE(products)
= {(941 kJ/mol) + (3 * 242 kJ/mol)} -[{2*(3*200 kJ/mol)}]
= 467 kJ/mol
Calculating the change in heat when 85.3 g chlorine reacts in the above reaction:
Moles of chlorine = 
= 1.20 mol 
Heat change when 1.20 mol chlorine reacts
= 