1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Bond [772]
3 years ago
13

Spring balance measures weight not the mass of body​

Physics
1 answer:
Marina CMI [18]3 years ago
3 0

  • Spring balance gives the measure of the weight of the body. Thus the given statement is false.
You might be interested in
This is the last question
koban [17]

Answer:

It's C

Explanation:

3 0
3 years ago
A non-conducting sphere of radius R = 3.0 cm carries a charge Q = 2.0 mC distributed uniformly throughout its volume. At what di
BlackZzzverrR [31]

Answer:

r =3 *\sqrt{2} = 4.24 cm

Explanation:

given data

Radius of sphere 3.0 cm

charge Q = 2.0 m C

We know that maximum electric field is given as

E_{MAX}= \frac{KQ}{r^{2}}

electric field inside the sphere can be determine by using below relation

\frac{KQ}{r^{2}}= \frac{1}{2}*\frac{KQ}{R^{2}}

r = \sqrt{2}R

r =3 *\sqrt{2} = 4.24 cm

4 0
3 years ago
A bicycle rider has a speed of 19.0 m/s at a height of 55.0 m above sea level when he begins coasting down hill. The mass of the
lukranit [14]

Answer:

The mechanical energy of the rider at any height will be 6.34 × 10⁴ J.

Explanation:

Hi there!

The mechanical energy of the rider is calculated as the sum of the gravitational potential energy plus the kinetic energy. Since there are no dissipative forces (like friction), the mechanical energy of the rider at a height of 55.0 m above the sea level will be the same at a height of 25.0 m (or at any height), because the loss in potential energy will be compensated by a gain in kinetic energy, according to the law of conservation of energy.

Then, calculating the potential and kinetic energy at 55.0 m and 19 m/s, we can obtain the mechanical energy that will be constant:

Mechanical energy = PE + KE

Where:

PE = potential energy.

KE = kinetic energy.

The potential energy is calculated as follows:

PE = m · g · h

Where:

m = mass of the object.

g = acceleration due to gravity.

h = height.

Then, the potential energy of the rider will be:

PE = 88.0 kg · 9.81 m/s² · 55.0 m = 4.75 × 10⁴ J

The kinetic energy is calculated as follows:

KE = 1/2 · m · v²

Where "m" is the mass of the object and "v" its velocity. Then:

KE = 1/2 · 88.0 kg · (19.0 m/s)²

KE = 1.59 × 10⁴ J

The mechanical energy of the rider will be:

Mechanical energy = PE + KE = 4.75 × 10⁴ J + 1.59 × 10⁴ J = 6.34 × 10⁴ J

This mechanical energy is constant because when the rider coast down the hill, its potential energy is being converted into kinetic energy, so that the sum of potential energy plus kinetic energy remains constant.

5 0
3 years ago
You are trying to find out how high you have to pitch a water balloon in order for it to burst when it hits the ground. You disc
FrozenT [24]

Answer:

The balloon hit the ground with velocity -15.34 m/s

Explanation:

<em>Lets explain how to solve the problem</em>

You found that the best height to pitch a water balloon in order for it to

burst when it hits the ground is 12 meters.

We consider that the 12 meters is the maximum height, so the velocity

at this height is zero.

To find the velocity when the balloon hits the ground lets use the rule

<em>v² = u² + 2gh</em>, where v is the final velocity, u is the initial velocity, g is

the acceleration of gravity and h is the height.

u = 0 , h = 12 m , g = 9.8 m/s²

<em>Substitute these values in the equation above</em>

v² = 0 + 2(9.8)(12)

v² = 235.2

<em>Take square root for both sides</em>

v = ± \sqrt{235.2}

The velocity is downward, then it's a negative value

Then v = -15.34 m/s

<em>The balloon hit the ground with velocity -15.34 m/s</em>

6 0
3 years ago
The direction equivalent to {40° W of S} is:
olchik [2.2K]

Answer:

c

Explanation:

3 0
3 years ago
Other questions:
  • Using the “On the Highway” distance time graph, what is the average velocity of the car? (use slope = rise/ run OR v = d/t)
    11·1 answer
  • How could we expect a white paper to appear when viewed in a red light?
    15·1 answer
  • In deep space, there is very little friction. Once they launch a probe into deep space, where there are no external forces actin
    14·2 answers
  • In Hooke's law, what does k represent?
    11·2 answers
  • A very long string (linear density 0.7 kg/m ) is stretched with a tension of 70 N . One end of the string oscillates up and down
    9·1 answer
  • Where are protons, neutrons, and electrons in the atom?
    5·1 answer
  • For Jane to see an image, light must enter her eyes. What specifically is entering her eyes when she sees an image?
    15·2 answers
  • Which equations are equivalent to 3/4+m=-7/4? Select three options.
    14·1 answer
  • When will electric charges flow?
    13·2 answers
  • A cyclist travels at 15 m/s during a sprint finish. What is this speed in km/h
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!