Answer:
b. 
Explanation:
As we know that the electric field due to infinite line charge is given as

here we can find potential difference between two points using the relation

now we have

now we have

now plug in all values in it


now we know by energy conservation


In order to create a charged object you need to transfer electrons either away or to the object by induction, conduction, or friction
Induction is without contact(like bringing a charged object to a electroscope charges the leaves at the bottom)
Conduction is with contact(like the previous answer, wore touching transfers the charge from a source to the object)
Friction(rubbing a balloon on wool)
Answer:
a) 3.0×10⁸ m
b) 0 m
Explanation:
Displacement is the distance from the starting position to the final position.
a) In half a year, the Earth travels from one point on the circle to the point on the exact opposite side of the circle (from 0° to 180°). The distance between the points is the diameter of the circle.
x = 2r
x = 2 (1.5×10⁸ m)
x = 3.0×10⁸ m
b) In a full year, the Earth travels one full revolution, so it ends up back where it started. The displacement is therefore 0 m.
Answer:
ExplanProject Torque was the free North American version of Level-R. It is a multiplayer online racing game (MMORG) with partially chargeable content, or micro-transactions. It features gameplay elements such as tuning and customization. The game is titled as Level R in Europe with a slightly different game interface and menus. Europe, US, Russia, Indonesia, Thailand, China, and Japan versions, are developed by Invictus Games and are subject to Invictus copyrightation:
Answer:
A) v₁ = 10.1 m/s t₁= 4.0 s
B) x₂= 17.2 m
C) v₂=7.1 m/s
D) x₂=7.5 m
Explanation:
A)
- Assuming no friction, total mechanical energy must keep constant, so the following is always true:

- Choosing the ground level as our zero reference level, Uf =0.
- Since the child starts from rest, K₀ = 0.
- From (1), ΔU becomes:
- In the same way, ΔK becomes:
- Replacing (2) and (3) in (1), and simplifying, we get:

- In order to find v₁, we need first to find h, the height of the slide.
- From the definition of sine of an angle, taking the slide as a right triangle, we can find the height h, knowing the distance that the child slides down the slope, x₁, as follows:

Replacing (5) in (4) and solving for v₁, we get:

- As this speed is achieved when all the energy is kinetic, i.e. at the bottom of the first slide, this is the answer we were looking for.
- Now, in order to finish A) we need to find the time that the child used to reach to that point, since she started to slide at the its top.
- We can do this in more than one way, but a very simple one is using kinematic equations.
- If we assume that the acceleration is constant (which is true due the child is only accelerated by gravity), we can use the following equation:

- Since v₀ = 0 (the child starts from rest) we can solve for a:

- Since v₀ = 0, applying the definition of acceleration, if we choose t₀=0, we can find t as follows:

B)
- Since we know the initial speed for this part, the acceleration, and the time, we can use the kinematic equation for displacement, as follows:

- Replacing the values of v₁ = 10.1 m/s, t₂= 2.0s and a₂=-1.5m/s2 in (10):

C)
- From (6) and (8), applying the definition for acceleration, we can find the speed of the child whem she started up the second slope, as follows:

D)
- Assuming no friction, all the kinetic energy when she started to go up the second slope, becomes gravitational potential energy when she reaches to the maximum height (her speed becomes zero at that point), so we can write the following equation:

- Replacing from (12) in (13), we can solve for h₂:

- Since we know that the slide makes an angle of 20º with the horizontal, we can find the distance traveled up the slope applying the definition of sine of an angle, as follows:
