Answer:
- 0.1852
- 0.0947
- 0.7201
- 3.0345 kg CO
/ Kg C
H
- 15.3848 Kg air / kg C
H
Explanation:
Molar masses of each product are :
Butane = 58 kg /kmol
Oxygen = 32 kg/kmol
Nitrogen = 28 kg/kmol
water = 18 kg/kmol
<u><em>1) Calculate the mass fraction of carbon dioxide </em></u>
= ( 4 * 44 ) / ( (5 * 18) + (4 *44 )+ (24.44 * 28) )
= 176 / 950.32
= 0.1852
<em><u>2) Calculate the mass fraction of water </u></em>
= ( 5 * 18 ) / (( 5* 18 ) + ( 4*44) + ( 24.44 * 28 ))
= 90 / 950.32
= 0.0947
<em><u>3) Calculate the mass fraction of Nitrogen </u></em>
= (24.44 * 28 ) / ((4 * 44 ) + ( 24.44 * 28 ) + ( 5 * 18 ))
= 684.32 / 950.32
= 0.7201
<em><u>4) Calculate the mass of Carbon dioxide in the products</u></em>
Mco2 = ( 4 * 44 ) / 58 = 3.0345 kg CO
/ Kg C
H
<u>5) Mass of Air required per unit of fuel mass burned </u>
Mair = ( 6.5 * 32 + 24.44 *28 ) / 58 = 15.3848 Kg air / kg C
H
Answer:
If 700 g of water at 90 °C loses 27 kJ of heat, its final temperature is 106.125 °C
Explanation:
Calorimetry is the measurement and calculation of the amounts of heat exchanged by a body or a system.
In this way, between heat and temperature there is a direct proportional relationship (Two magnitudes are directly proportional when there is a constant so that when one of the magnitudes increases, the other also increases; and the same happens when either of the two decreases .). The constant of proportionality depends on the substance that constitutes the body and its mass, and is the product of the specific heat and the mass of the body. So, the equation that allows to calculate heat exchanges is:
Q = c * m * ΔT
Where Q is the heat exchanged by a body of mass m, constituted by a substance of specific heat c and where ΔT is the variation in temperature, ΔT= Tfinal - Tinitial
In this case:
- Q= 27 kJ= 27,000 J (being 1 kJ=1,000 J)

- m=700 g
- ΔT= Tfinal - Tinitial= Tfinal - 90 °C
Replacing:

Solving:


16.125 °C= Tfinal - 90 °C
Tfinal= 16.125 °C + 90 °C
Tfinal= 106.125 °C
<u><em>If 700 g of water at 90 °C loses 27 kJ of heat, its final temperature is 106.125 °C</em></u>
Answer:
Most acid precipitation results from the combination of <u>Sulfur Oxides and Nitrogen Oxides</u> with water in the atmosphere, forming strong acids that fall with rain or snow.
Explanation:
Acid rain is said to be that rain which contains high concentration of H⁺ ions. The main source of acid rain is the elimination of NOₓ (Nitrogen Oxides) and SOₓ (Sulfur Oxides) from different means in industries and other combustion processes on earth.
Examples:
SO₂ + H₂O → H₂SO₄
NO₂ + OH° → HNO₃
From above examples it can be seen that the sulfur and nitrogen oxides when reacted with water forms strong acids. These acids come along with rain water and causes different problems to living organisms and non living objects like buildings.
Answer:
Nuclear power comes from nuclear fission
Nuclear power plants use heat produced during nuclear fission to heat water. In nuclear fission, atoms are split apart to form smaller atoms, releasing energy. Fission takes place inside the reactor of a nuclear power plan
Explanation:
Density is mass over volume, so:
14.3/8.46≈ 1.6903 g/cm^3