Natural selection requires variation between individuals. Mutations and reproduction increase genetic variation in a population. Natural selection occurs when environmental pressures favor certain traits that are passed on to offspring.
Answer:
1.78 × 10⁹ μg
Explanation:
We have to convert 1.78 kg to μg.
Step 1: Convert 1.78 kilograms to grams
We will use the conversion factor 1 kg = 10³ g.
1.78 kg × 10³ g/1 kg = 1.78 × 10³ g
Step 2: Convert 1.78 × 10³ grams to micrograms
We will use the conversion factor 1 g = 10⁶ μg.
1.78 × 10³ g × 10⁶ μg/1 g = 1.78 × 10⁹ μg
Answer:
0.01144L or 1.144x10^-2L
Explanation:
Data obtained from the question include:
V1 (initial volume) = 20.352 mL
P1 (initial pressure) = 680mmHg
P2 (final pressure) = 1210mmHg
V2 (final volume) =.?
Using the Boyle's law equation P1V1 = P2V2, the volume of the container can be obtained as follow:
P1V1 = P2V2
680 x 20.352 = 1210 x V2
Divide both side by 1210
V2 = (680 x 20.352)/1210
V2 = 11.44mL
Now we need to convert 11.44mL to L in order to obtain the desired result. This is illustrated below:
1000mL = 1 L
11.44mL = 11.44/1000 = 0.01144L
Therefore the volume of the container is 0.01144L or 1.144x10^-2L
Answer:
See explanation
Explanation:
If the spot in TLC is below the solvent front, it will be observed that the spot, instead of being separated by the solvent as expected, will just dissolve away in the solvent and zero actual separation of the mixture is achieved.
If the solute is dissolved away instead of being separated by the solvent, then the experiment fails because no actual separation of the mixture is achieved.
Hence, in TLC, the spot must be applied above the solvent front so that the capillary movement of the solvent through the plate can lead to the eventual separation of the components of the mixture since the various components of the mixture will travel at different speeds through the plate.
Also, if the solvent is above the spot, the solvent may evaporate selectively from the points above the spot while separation is ongoing.
Answer:
the molarity is 3.68 moles/L
Explanation:
the molality of the solution of sucrose is
m= moles of glucose / Kg of solvent (water)= 6.81 ,
since the molecular weight of glucose is 180.156 gr/mole , then per each kilogram of solvent there is
6.81 moles*180.156 gr/mole + 1000 gr of water = 2226.86 gr of solution
from the density
volume of solution = mass of solution/density = 2286.86 gr / 1.2 gr/ml = 1855.71 ml
therefore there is 1000 gr of water in 1855.71 ml
then the molarity M is
M= moles of glucose / L of solution = (moles of glucose / Kg of solvent) * (Kg of solvent/L of solution) = 6.81 moles/Kg * 1Kg/1.85 L = 3.68 moles/L
M= 3.68 moles/L
Note:
- Would be wrong in this case to assume density of water = 1 Kg/L since the solution is heavily concentrated in glucose and therefore the density of water deviates from its pure value.