Answer:
Option C= A hydrogen bond formed between a polar side chain and a hydrophobic side chain.
Explanation:
All three given options a, b and d have common mechanism to accommodate the polar amino acid.
A= A hydrogen bond forms between two polar side chains.
B= A hydrogen bond from between a polar side chain and protein back bone.
D = hydrogen bond form between polar side chains and a buried water molecules.
All these are use to accommodate the polar amino acid.
While option C is not used. which is:
A hydrogen bond formed between a polar side chain and a hydrophobic side chain.
Answer:
The correct answer is option E.
Explanation:
Structures for the reactants and products are given in an aimage ;
Number of double bonds in oxygen gas molecule = 1
Number of double bonds in nitro dioxide gas molecule = 1
Number of single bond in in nitro dioxide gas molecule = 1
Number of triple bonds in nitrogen gas molecule = 1

![\Delta H=[2 mol\times \Delta H_{f,NO_2}]-[1 mol\times \Delta H_{f,N_2}-2 mol\times \Delta H_{f,O_2}]](https://tex.z-dn.net/?f=%5CDelta%20H%3D%5B2%20mol%5Ctimes%20%5CDelta%20H_%7Bf%2CNO_2%7D%5D-%5B1%20mol%5Ctimes%20%5CDelta%20H_%7Bf%2CN_2%7D-2%20mol%5Ctimes%20%5CDelta%20H_%7Bf%2CO_2%7D%5D)

(pure element)
(pure element )

The enthalpy of the given reaction is 15.86 kcal.
To determine the concentration of one solution which is specifically basic or acidic solution through taking advantage on its points of equivalence, titration analysis is done.
Let us determine the reaction for the titration below:
2NaOH +2H2SO4 = Na2SO4 +2H2O
So,
0.0665 mol NaOH (2 mol H2SO4/ 2mol NaOH) / .025 L solution
= 2.62 M H2SO4
The answer is the fourth option:
<span>2.62 M</span>
pretty sure its B thank me later
Answer:
The metric system goes by powers of ten, so it's very easy to measure. That would be the main advantage, measurements of ten. We can also say it's the most used measurement around the world, so all scientists have little to no conversion, but the main answer is probably the first one :)