Nitrous oxide .
The Lewis dot structure is attached
Explanation:
To balance the reactions given, we must understand that the principle to follow is the law of conservation of matter.
Based on this premise, the number of moles of species on the reactant and product side must be the same;
Li + Br₂ → LiBr
Put a,b and c as the coefficient of each species
aLi + bBr₂ → cLiBr
balancing Li;
a = c
balancing Br;
2b = c
let a = 1;
c = 1
b =
or a = 2, b = 1 , c = 2
2Li + Br₂ → 2LiBr
P + Cl₂ → PCl₃
Using the same method;
aP + bCl₂ → cPCl₃
balancing P;
a = c
balancing Cl;
2b = 3c
let a = 1;
c = 1
b =
or
a = 2, b = 3, c = 2
2P + 3Cl₂ → 2PCl₃
iii,
H₂ + SO₂ → H₂S + H₂O
use coefficients a,b,c and d;
aH₂ + bSO₂ → cH₂S + dH₂O
balancing H;
2a = 2c + 2d
balancing S;
b = c
balancing O
2b = d
let b = 1,
c = 1
d = 2
a = 3
3H₂ + SO₂ → H₂S + 2H₂O
Identical electron configurations : K⁺ and Cl⁻
<h3>Further explanation </h3>
In an atom, there are levels of energy in the shell and sub-shell
This energy level is expressed in the form of electron configurations.
Charging electrons in the sub-shell uses the following sequence:
<em>1s², 2s², 2p⁶, 3s², 3p⁶, 4s², 3d¹⁰, 4p⁶, 5s², 4d¹⁰, 5p⁶, 6s², etc. </em>
S²⁻ : [Ne] 3s²3p⁶
Cl : [Ne] 3s²3p⁵
K⁺ : 1s² 2s² 2p⁶ 3s² 3p⁶
Cl⁻ : 1s² 2s² 2p⁶ 3s²3p⁶
S :[Ne] 3s²3p⁴
Ar : [Ne] 3s²3p⁶
Cl⁻ : 1s² 2s² 2p⁶ 3s²3p⁶
K : 1s² 2s² 2p⁶ 3s² 3p⁶4s¹