Answer:
4.13×10²⁷ molecules of N₂ are in the room
Explanation:
ideal gases Law → P . V = n . R . T
Pressure . volume = moles . Ideal Gases Constant . T° K
T°K = T°C + 273 → 20°C + 273 = 293K
Let's determine the volume of the room:
18 ft . 18 ft . 18ft = 5832 ft³
We convert the ft³ to L → 5832 ft³ . 28.3L / 1 ft³ = 165045.6 L
1 atm . 165045.6 L = n . 0.082 L.atm/mol.K . 293K
(1 atm . 165045.6 L) / 0.082 L.atm/mol.K . 293K = n
6869.4 moles of N₂ are in the room
If we want to find out the number of molecules we multiply the moles by NA
6869.4 mol . 6.02×10²³ = 4.13×10²⁷ molecules
You have to calculate the oxidation estates of the atoms in each compound.
I will start with K2Cr2O7 because I believe that Cr is the best candidate to reduce its oxidation number in 3 units.
In K2Cr2O7:
- K has oxidation state of 1+, then K2 has a charge of 2* (1+) = 2+.
- O has oxidation state of 2*, then O7 has a charge of 7* (2-) = 14-.
That makes that Cr2 has charge of 14 - 2 = +12, so each Cr has +12/2 = +6 oxidation state.
In Cr2O3:
- O has oxidation state of 2-, then O3 has charge 3 * (2-) = - 6
- Then, Cr2 has charge 6+, and each Cr has charge 6+ / 2 = 3+.
So, we have seen that Cr reduced its oxidation state in 3 units, from 6+ to 3+.
Answer: Cr has a change in oxidation number of - 3.
Answer:
well for me it's
Explanation:
The reflection of the seas
Answer:
See attached picture.
Explanation:
Hello,
In this case, for the given name, you can verify the structure on the attached picture, wherein you can see verify the presence of both the ethyl and methyl radicals at the third carbon as well as the triple bond at the first carbon.
Best regards.
Answer:
According to Le Chatelier's principle, increasing the reaction temperature of an exothermic reaction causes a shift to the left and decreasing the reaction temperature causes a shift to the right.
Explanation:
C6H12O6(s) + 6O2(g) ⇌6CO2(g) + 6H2O(g)
We are told that the forward reaction is exothermic, meaning heat is removed from the reacting substance to the surroundings.
According to Le Chatelier's principle,
1. for an exothermic reaction, on increasing the temperature, there is a shift in equilibrium to the left and formation of the product is favoured.
2. if the temperature of the system is decreased, the equilibrium shifts to right and the formation of the reactants is favoured.
3. if the reaction temperature is kept constant, the system is at equilibrium and there is no shift to the right nor to the left.