<h3>
Answer:</h3>
49 N
<h3>
Explanation:</h3>
<u>We are given;</u>
- Mass of the brick as 3 kg
- The coefficient of friction as 0.6
We are required to determine the force that must be applied by the woman so the brick does not fall.
- We need to importantly note that;
- For the brick not to fall the, the force due to gravity is equal to the friction force acting on the brick.
- That is; Friction force = Mg
But; Friction force = μ F
Therefore;
μ F = mg
0.6 F = 3 × 9.8
0.6 F = 29.4
F = 49 N
Therefore, she must use a force of 49 N
An epidemiologist is a doctor who counteracts mass infections (epidemics, pandemics), organizes the treatment and prevention of the spread of epidemics.
I agree the best choice is A............
Y₀ = initial position of the balloon at the top of the building = 44 m
Y = final position of the balloon at halfway down the building = 44/2 = 22 m
a = acceleration of the balloon = - 9.8 m/s²
v₀ = initial velocity of the balloon = 0 m/s
v = final velocity of the balloon = ?
using the kinematics equation
v² = v₀² + 2 a (Y - Y₀)
inserting the values
v² = 0² + 2 (- 9.8) (22 - 44)
v = 20.78 m/s
Answer:
i have no idea what this is
Explanation: