The correct answer for the question that is being presented above is this one:
Phi = BAsin(theta)
<span>1. Phi(i) = BA </span>
<span>2. Phi(f) = 0 </span>
3. EMF = N(phi(i)-phi(f))/deltat
Here are the follow-up questions:
<span>1. What is the total magnitude Phi_initial of the magnetic flux through the coil before it is rotated? </span>
<span>2. What is the magnitude Phi_final of the total magnetic flux through the coil after it is rotated? </span>
<span>3. What is the magnitude of the average emf induced in the coil?</span>
Answer:
343/440
Explanation:
Recall that v=d/t
Now, this is the same thing.
Frequency is 1/T and wavelength is the distance travelled in one period.
So Vs=f*λ
(the greek letter is used as the symbol of wavelength; it's arbitrary)
Answer:
Average velocity is 0.296 m/s.
Average speed is 4.0 m/s.
Explanation:
Given:
Distance of the circular track is, 
Number of laps ran is, 
Time taken for the run is, 
Now, total distance covered in 5.4 laps = 
Also, since the path is a circle, the final position of the athlete after 5.4 laps will be 0.4 of 400 m ahead of the starting point.
Distance covered in 0.4 laps is, 
Therefore, the displacement of the athlete will be 160 m as the athlete is 160 m ahead of the starting point and displacement depends on the initial and final points only.
Now, average velocity is given as:

Average speed is the ratio of total distance covered to total time taken.
So, average speed = 
The strength of the electric field at that point and the force would this charge experiences at that point will be 4.587 N/C and 12.38 N.
<h3>
</h3><h3>What is the electric field strength?</h3>
The electric field strength is defined as the ratio of electric force to charge.
Given data;
q₁ = 5.4 C
F₁ is the electric force in case1
E is the electric field =?
F₂ is the electric force in case 2
q₂ is the charge 2
The strength of the electric field at that point is;
F₁=Eq₁
E₁=F/q₁
E₁=25.0 N / 5.4 C
E₁=4.587 N/C
The force would this charge experience at that point when the charge is 2.7 C;
F₂=Eq₂
F₂=4.587 N/C × 2.7 C
F₂ = 12.38 N
Hence the strength of the electric field at that point and the force would this charge experiences at that point will be 4.587 N/C and 12.38 N.
To learn more about the electric field strength, refer to the link;
brainly.com/question/4264413
#SPJ1
Don’t still need the answers or are u done and is it on edge