Answer: Its answer C: A wheelbarrow is more difficult to move as More objects are placed inside.
Explanation: The greater the mass of the object the more force is needed to make it move.
Hope this helps!! :)
Answer:
23.52092 J
Explanation:
m = Mass of block = 6.79 kg
s = Sliding distance = 2.82 m
= Angle of slide = 20.7°
= Coefficient of kinetic friction = 0.425
g = Acceleration due to gravity = 9.8 m/s²
Work done by the force of gravity is given by
![W=mgsin\theta\\\Rightarrow W=6.79\times 9.8\times sin20.7\\\Rightarrow W=23.52092\ J](https://tex.z-dn.net/?f=W%3Dmgsin%5Ctheta%5C%5C%5CRightarrow%20W%3D6.79%5Ctimes%209.8%5Ctimes%20sin20.7%5C%5C%5CRightarrow%20W%3D23.52092%5C%20J)
The work done by the force of gravity is 23.52092 J
The CORRECT answer would be false. They are different and so therefore the answer is false.
Hope this helped ‼️
Answer:
Average velocity v = 21.18 m/s
Average acceleration a = 2 m/s^2
Explanation:
Average speed equals the total distance travelled divided by the total time taken.
Average speed v = ∆x/∆t = (x2-x1)/(t2-t1)
Average acceleration equals the change in velocity divided by change in time.
Average acceleration a = ∆v/∆t = (v2-v1)/(t2-t1)
Where;
v1 and v2 are velocities at time t1 and t2 respectively.
And x1 and x2 are positions at time t1 and t2 respectively.
Given;
t1 = 3.0s
t2 = 20.0s
v1 = 11 m/s
v2 = 45 m/s
x1 = 25 m
x2 = 385 m
Substituting the values;
Average speed v = ∆x/∆t = (x2-x1)/(t2-t1)
v = (385-25)/(20-3)
v = 21.18 m/s
Average acceleration a = ∆v/∆t = (v2-v1)/(t2-t1)
a = (45-11)/(20-3)
a = 2 m/s^2