2C_6H_14 + 19O_2 → 12CO_2 + 14H_2O
<em>Step 1</em>. Write the <em>condensed structural formula</em> for 2,3-dimethylbutane.
(CH_3)_2CHCH(CH_3)_2
<em>Step 2</em>. Write the <em>molecular formula</em>.
C_6H_14
<em>Step 3</em>. Write the <em>unbalanced chemical equation</em>.
C_6H_14 + O_2 → CO_2 + H_2O
<em>Step 4</em>. Pick the <em>most complicated-looking formula</em> (C_6H_14) and balance its atoms (C and H).
<em>1</em>C_6H_14 + O_2 → <em>6</em>CO_2 + <em>7</em>H_2O
<em>Step 5</em>. Balance the <em>remaining atoms</em> (O).
1C_6H_14 + (<em>19/2</em>)O_2 → 6CO_2 + 7H_2O
Oops! <em>Fractional coefficients</em>!
<em>Step 6</em>. <em>Multiply all coefficients by a number</em> (2) to give integer coeficients..
2C_6H_14 + 19O_2 → 12CO_2 + 14H_2O
Stability of atoms is determined by neutron:proton ratio. This n/p ratio is 1:1 for elements below atomic number 20. Hope this helps.
Answer:
The reaction will be spontaneous
Explanation:
To determine if the reaction will be spontaneous or not at this temperature, we need to calculate the Gibbs's energy using the following formula:
<u>If the Gibbs's energy is negative, the reaction will be spontaneous, but if it's positive it will not.</u>
Calculating the
:
Now, other factor we need to determine is the sign of the S variation. When talking about gases, the more moles you have in your system the more enthropic it is.
In this reaction you go from 7 moles to 8 moles of gas, so you can say that you are going from one enthropy to another higher than the first one. This results in:
If the variation of S is positive, the Gibbs's energy will be negative always and the reaction will be spontaneous.