Answer:
The isopropanol evaporated while the water did not because the molecules don't stick together as strongly as the molecules in the water do. The water would need more energy transferred in, in order to evaporate.
Explanation:
Answer:
7.28 mol Na2SO4
Explanation:
Since it is already in moles, all we have to do is use a molar ratio
A molar ratio is the proportions of reactants and products using the balanced equation. When writing a mole ratio, the given information must cross out with the right thing.
7.28 mol H2SO4 * 1 mol Na2SO4/1 H2SO4 = 7.28 mol Na2SO4
*notice how the H2SO4 crosses out
Answer:
t = 37.1 s
Explanation:
The equation for the reaction is given as;
2 N2O5(g) --> 4 NO2 + O2
Initial: 0.110 - -
change: -2x +4x +x
Final: 0.110 - 2x +4x +x
But final = 0.150atm;
0.110 - 2x + 4x + x = 0.150 atm
3x = 0.150 - 0.110
x = 0.0133 atm
Pressure in reactant side;
0.110 - 2x
0.110 - 2 (0.0133) = 0.0834 atm
The integral rate law expression is given as;
ln ( [A] / [Ao] ) = -kt
k = rate constant = 7.48*10^-3*s-1
ln (0.0834/0.11) = (7.48*10^-3) t
upon solving, t = 37.1 s
Answer:
A. It is possible not all of the water was evaporated from the sand, causing the recovered mass to be higher
D. While drying the NaCl, the liquid boiled and some splattered out of the evaporating dish, causing the recovered mass to be higher.
Explanation:
Sand absorbs water and stores it. The sunlight causes the water to evaporate but sand can hold some of the water inside it. This results in increase in mass of the sand. The mass of sand before and after the water evaporation can be different.