Answer:
After 7 hours will be 1.95489493x10^12 viruses
Step-by-step explanation:
If the virus spread with 19% per hour after one hour it will increase 57 and continue in the 300+((300*0.19)^7) form, we just need to caculate the form
Answer:
La suma de cifras del producto original es igual a 12.
Step-by-step explanation:
De acuerdo a la información proporcionada, si multiplicas un número "x" por 32 su resultado sería igual al producto original "y" más 54 dado que dice que se obtiene un producto mayor en 54 al producto original, lo que se puede expresar de la siguiente forma:
32x=y+54
Además, se puede inferir a partir del enunciado que si el número x se hubiera multiplicado por 23 el resultado habría sido el producto original que lo denominamos como "y", por lo que puedes decir que:
y=23x
Ahora puedes reemplazar y=23x en 32x=y+54 y despejar x:
32x=23x+54
32x-23x=54
9x=54
x=54/9
x=6
Finalmente, puedes reemplazar el valor de x en y=23x:
y=23x
y=23*6
y=138
Suma de cifras: 1+3+8 = 12
De acuerdo a esto, la respuesta es que la suma de cifras es igual a 12.
Answer:
a) P=0.0225
b) P=0.057375
Step-by-step explanation:
From exercise we have that 15% of items produced are defective, we conclude that probabiity:
P=15/100
P=0.15
a) We calculate the probabiity that two items are defective:
P= 0.15 · 0.15
P=0.0225
b) We calculate the probabiity that two of three items are defective:
P={3}_C_{2} · 0.85 · 0.15 · 0.15
P=\frac{3!}{2!(3-2)!} · 0.019125
P=3 · 0.019125
P=0.057375
Answer:
a. 1/13
b. 1/52
c. 2/13
d. 1/2
e. 15/26
f. 17/52
g. 1/2
Step-by-step explanation:
a. In a deck of cards, there are 4 suits and each of them has a 7. Therefore, the probability of drawing a 7 is:
P(7) = 4/52 = 1/13
b. There is only one 6 of clubs, therefore, the probability of drawing a 6 of clubs is:
P(6 of clubs) = 1/52
c. There 4 fives (one for each suit) and 4 queens in a deck of cards. Therefore, the probability of drawing a five or a queen is:
P(5 or Q) = P(5) + P(Q)
= 4/52 + 4/52
= 1/13 + 1/13
P(5 or Q) = 2/13
d. There are 2 suits that are black. Each suit has 13 cards. Therefore, there are 26 black cards. The probability of drawing a black card is:
P(B) = 26/52 = 1/2
e. There are 2 suits that are red. Each suit has 13 cards. Therefore, there are 26 red cards. There are 4 jacks. Therefore:
P(R or J) = P(R) + P(J)
= 26/52 + 4/52
= 30/52
P(R or J) = 15/26
f. There are 13 cards in clubs suit and there are 4 aces, therefore:
P(C or A) = P(C) + P(A)
= 13/52 + 4/52
P(C or A) = 17/52
g. There are 13 cards in the diamonds suit and there are 13 in the spades suit, therefore:
P(D or S) = P(D) + P(S)
= 13/52 + 13/52
= 26/52
P(D or S) = 1/2