Answer:
q₃=5.3nC
Explanation:
First, we have to calculate the force exerted by the charges q₁ and q₂. To do this, we use the Coulomb's Law:

Since we know the net force, we can use this to calculate q₃. As q₁ is at the right side of q₃ and q₁ and q₃ have opposite signs, the force F₁₃ points to the right. In a similar way, as q₂ is at the left side of q₃, and q₂ and q₃ have equal signs, the force F₂₃ points to the right. That means that the resultant net force is the sum of these two forces:

In words, the value of q₃ must be 5.3nC.
Answer: Satellite X has a greater period and a slower tangential speed than Satellite Y
Explanation:
According to Kepler’s Third Law of Planetary motion “The square of the orbital period of a planet is proportional to the cube of the semi-major axis (size) of its orbit”.
(1)
Where;
is the Gravitational Constant
is the mass of the Earth
is the semimajor axis of the orbit each satellite describes around Earth (assuming it is a circular orbit, the semimajor axis is equal to the radius of the orbit)
So for satellite X, the orbital period
is:
(2)
Where 
(3)
(4)
For satellite Y, the orbital period
is:
(5)
Where 
(6)
(7)
This means 
Now let's calculate the tangential speed for both satellites:
<u>For Satellite X:</u>
(8)
(9)
<u>For Satellite Y:</u>
(10)
(11)
This means 
Therefore:
Satellite X has a greater period and a slower tangential speed than Satellite Y
Answer:
Primitive material was formed in the early stage of the solar system, before planets cooled off enough to differentiate elements of different density. It was not subject to great heat or pressure after it formed.
We can identify primitive meteorites by their composition, primitive meteorites are usually undifferentiated stones, with some metallic grains mixed in. Some primitive meteorites are darker, carbonaceous stones.
According to the periodic table, silicon has about 14 protons.
Answer:
When the person is drunk the car travels 20.1 meters more than when the person is sober. The distance traveled by car is:
Person drunk: 28.1 m
Person sober: 8 m
Explanation:
The distance traveled can be found using the following equation:

Where:
v: is the speed = 90 km/h
t: is the time
When the person is sober, the time that takes to hit the brakes is 0.320 s, so we have:
And when the person is drunk, the time is 1.00 s, hence the distance is:
The distance traveled by the car when the person is drunk compared when the person is sober is:
Therefore, when the person is drunk the car travels 20.1 meters more than when the person is sober.
I hope it helps you!