Explanation:
acid make our teeth rot because strong acid are corrosive
Explanation:
To determine the charge on a given transition metal atom, you have to consider what element it is, the charges on the other atoms in the molecule, and the net charge on the molecule itself. The charges are always whole numbers, and the sum of all the atomic charges equals the charge on the molecule
Answer:
1)KNO3 ( pottasium trioxonitrate (V)
2)Ca(NO3)2 (calcium trioxonitrate (V
Explanation:
1)KNO3 ( pottasium trioxonitrate (V)
2)Ca(NO3)2 (calcium trioxonitrate (V)
Thses two compounds are metallic compounds and does not react with either the acid or the base.
Write the type of metal, based on your examination of the periodic table?
1)KNO3 ( pottasium trioxonitrate (V) have a potassium element which belongs to group 2 of the Periodic table which is an alkaline metal and can react with water or steàm
2)Ca(NO3)2 (calcium trioxonitrate (V) has calcium metal element which is an alkaline earth metal in the Periodic table and they react with Hallogens
We are given that the balanced chemical reaction is:
cacl2⋅2h2o(aq) +
k2c2o4⋅h2o(aq) --->
cac2o4⋅h2o(s) +
2kcl(aq) + 2h2o(l)
We known that
the product was oven dried, therefore the mass of 0.333 g pertains only to that
of the substance cac2o4⋅h2o(s). So what we will do first is to convert this
into moles by dividing the mass with the molar mass. The molar mass of cac2o4⋅h2o(s) is
molar mass of cac2o4 plus the
molar mass of h2o.
molar mass cac2o4⋅h2o(s) = 128.10
+ 18 = 146.10 g /mole
moles cac2o4⋅h2o(s) =
0.333 / 146.10 = 2.28 x 10^-3 moles
Looking at
the balanced chemical reaction, the ratio of cac2o4⋅h2o(s) and k2c2o4⋅h2o(aq) is
1:1, therefore:
moles k2c2o4⋅h2o(aq) = 2.28
x 10^-3 moles
Converting
this to mass:
mass k2c2o4⋅h2o(aq) = 2.28
x 10^-3 moles (184.24 g /mol) = 0.419931006 g
Therefore:
The mass of k2c2o4⋅<span>h2o(aq) in
the salt mixture is about 0.420 g</span>