Answer:
work done is -150 kJ
Explanation:
given data
volume v1 = 2 m³
pressure p1 = 100 kPa
pressure p2 = 200 kPa
internal energy = 10 kJ
heat is transferred = 150 kJ
solution
we know from 1st law of thermodynamic is
Q = du +W ............1
put here value and we get
-140 = 10 + W
W = -150 kJ
as here work done is -ve so we can say work is being done on system
I GEUSS A and COM is correct answer to this question
<span>At this distance, and with an orbital speed of 24.077 km/s, Mars takes 686.971 Earth days, the equivalent of 1.88 Earth years, to complete a orbit around the Sun. This eccentricity is one of the most pronounced in the Solar System, with only Mercury having a greater one (0.205).
686.971 rounds to 687
HOPE I HELPED!</span>
By Boyle's law:
P₁V₁ = P₂V₂
300*75 = P<span>₂*50
</span>P<span>₂*50= 300*75
</span>
P<span>₂ = 300*75/50 = 450
</span>
P<span>₂ = 450 kiloPascals.
The pressure has increased as a result of compression of gas.
Boyle's Law supports this observation.</span>
Answer:
The pilot is 2214.22 miles from her starting position
Explanation:
Since the pilot is traveling at a constant speed of 635 mph, the total distance traveled can be easily found as follows:

There was a 10 degrees deviation, so the angle between the trajectory of both legs is 170 degrees.
The distance we need to find is that from the start of the first leg to the end of the second leg, those three distances form a triangle and since the side we're interested in is opposite to the 170 degrees angle, we can determine its length by the law of cosines:

The pilot is 2214.22 miles from her starting position