Answer:
The force will be "5,488". A further solution is provided below.
Explanation:
The given values are:
speed,
v = 100m/s
mass,
m = 80 kg
acceleration,
a = 7
Now,
Radius will be:
⇒ 
⇒ 
⇒ 
⇒ 
Force will be:
⇒ 
⇒ 
⇒ 
What’s the objects ? Just reply to this comment
Answer
given,
SAT is 500 with a standard deviation of 100.
a sample of 400 students whose family income was between $70,000 and $80,000 had an average verbal SAT score of 511.
sample mean = 
= 
= 5
95% confidence level is achieved within +/- 1.960 standard deviations.
1.960 standard deviations x 5 is equal to +/- 9.8
confidence interval = 511 - 9.8 --- 511 + 9.8
= 501.2-----520.8
Answer:
I = 0.483 kgm^2
Explanation:
To know what is the moment of inertia I of the boxer's forearm you use the following formula:
(1)
τ: torque exerted by the forearm
I: moment of inertia
α: angular acceleration = 125 rad/s^2
You calculate the torque by using the information about the force (1.95*10^3 N) and the lever arm (3.1 cm = 0.031m)

Next, you replace this value of τ in the equation (1) and solve for I:

hence, the moment of inertia of the forearm is 0.483 kgm^2
<u><em>In accordance with the International Regulation for the prevention of collisions at sea</em></u><u>:
</u>
<u>1.- A sailing boat has a passing preference over a motorized boat, </u><u>except when the motor boat is limited by its draft</u><u>.
</u>
<u>2.- The sailboat must maintain its course and speed.
</u>
<u>3.- </u><em><u>If it is evident that the PWC does not respond</u></em><u>, the sailboat must sound the warning signal, and change its course to starboard.
</u>
<u>4.- </u><u><em>All actions must be taken as soon as possible</em></u><u>.
</u>
<u>5.- If a sailboat is using its engine, the situation changes, and in that case, both ships must alter to starboard.</u>