You sure wouldn't want something like cm/s or (yikes cm/hr). You want a reasonable number for sports usually between 0 and 100
Km / hour would be a good choice.
The next town to where I live is 25 km away. On a good day, I can make it there in about 3/4 of an hour.
Speed = 25 km / 0.75 hour = 33.3 km/hour. That's actually a little fast most of the time. But you should understand what I mean.
Objects should be cooled before their mass is determined on a sensitive balance because it could damage the balance. Also, because it would give you wrong reading of the mass. Hot objects would warm the air around it. A warm air would expand and would produce convection as it rises causing to give the object a mass that is less than the actual. Another reason would be it would cause instability in the readings, the mass would fluctuate every now and then due to the convection currents around the object. It is always recommended to weigh the masses of objects that are in room temperature.
High density
random words to fill up 20 character minimum for answering questions :P
The only graph that accurately depict the given motion is graph D.
The given parameters;
- initial position of the man = 0
- direction of the man's first displacement = backward
- time of first motion, t₁ = 6 seconds
- velocity of this first displacement = v₁
- time without any motion (<em>zero movement</em>) = 6 seconds
- direction of the second displacement = forward
- velocity of second displacement = 2v₁
Let the acceleration of the first displacement = a
Acceleration of the second displacement = 2a
From the given graphs we can eliminate every graph without initial decrease or motion towards the negative direction.
The only options with initial motion towards the negative direction are;
The difference between graph B and D;
- in graph B there is a uniform motion for 6 seconds
- in graph D there is no motion for 6 seconds (<em>this is obvious as the line fall directly on top of the horizontal axis maintaining a value of zero for 6 seconds</em>).
Thus, the only graph that accurately depict the given motion is graph D.
Learn more here: brainly.com/question/21095906