Answer:
Explanation:
Discount the time here; it's not important. It doesn't tell you how long it takes the car to stop, it only refers to reaction time, which means nothing in the scheme of things.
The useful info is as follows:
initial velocity = 20 m/s
final velocity = 0 m/s
a = -10 m/s/s
and we are looking for the displacement. Use the following equation:
Δx
where v is the final velocity, v₀ is the initial velocity, a is the deceleration (since it's negative), and Δx is displacement. Filling in:
Δx and
0 = 400 - 20Δx and
-400 = -20Δx so
Δ = 20 meters
3.5 seconds is 3500 milliseconds.
Answer:
The elasticity of the bungee cord reduces the gravitational forces applied on the body during bungee jumping. For example, if a 100-pound individual jumps from a building and encounters 900 pounds of deceleration force, they will feel 9 "G's" of force.
hopefully this'll help
have a nice day!!! :D
The object takes 0.5 seconds to complete one rotation, so its rotational speed is 1/0.5 rot/s = 2 rot/s.
Convert this to linear speed; for each rotation, the object travels a distance equal to the circumference of its path, or 2<em>π</em> (1.2 m) = 2.4<em>π</em> m ≈ 7.5 m, so that
2 rot/s = (2 rot/s) • (2.4<em>π</em> m/rot) = 4.8<em>π</em> m/s ≈ 15 m/s
thus giving it a centripetal acceleration of
<em>a</em> = (4.8<em>π</em> m/s)² / (1.2 m) ≈ 190 m/s².
Then the tension in the rope is
<em>T</em> = (50 kg) <em>a</em> ≈ 9500 N.