Alpha emission is the process results in a change in mass number. Option B is correct.
<h3>What is mass number?</h3>
The total number of protons and neutrons in an atomic nucleus is known as the mass number, often known as the atomic mass number or nucleon number.
It's about the same as the atom's atomic mass, expressed in atomic mass units.
The alpha particle is a helium nucleus with two protons and two neutrons in an alpha decay or alpha emission. The number of protons and neutrons is reduced by two as a result of this action.
The quantity of protons and neutrons is affected by gamma emission descent. Also, while electron capture has no effect on the number of neutrons, it does raise the 1 also number of protons by one.
Alpha emission is the process results in a change in mass number.
Hence option B is correct.
To learn more about the mass number, refer:
brainly.com/question/4408975
#SPJ1
Answer:
The left train travels 2378 m until it reaches the meeting point.
Explanation:
The equation for the position of the trains is the following:
x = x0 + v · t
Where:
x = position at time t
x0 = initial position
v = velocity
t = time
If we place the origin of the frame of reference at the initial position of the left train, the right train will be at an initial position of 4744. 6 m relative to the left train. The velocity of the right train will be negative because it will be heading towards the origin.
At the meeting point, the position of both trains is the same:
x left train = x right train
x0₁ + v₁ ·t = x0₂ + v₂ · t
0m + 29 m/s · t = 4744.6 m - 29 m/s · t
58 m/s · t = 4744.6 m
t = 4744.6 m / 58 /s
t = 82 s
The position of the left train at that time will be:
x = x0 + v · t
x = 0 m + 29 m/s · 82 s
x = 2378 m
The left train travels 2378 m until it reaches the meeting point.
Answer:

Explanation:
The torque is the force by the distance so to determinate that both torque are the same magnitude so




Solve to d2


No. What most people call 'terminal velocity' is the speed of the falling
object when the downward force of gravity is equal to the upward force
of air resistance. At that speed, the vertical forces on the object are
balanced, so it stops accelerating, and falls at a constant speed.
If there were no atmosphere, there would be no upward force due to
air resistance. The falling object would continue to accelerate all the
way down until it went 'splat'.
This is exactly the situation for meteoroids or asteroids falling onto the Moon.